首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The development of solid strong base catalysts utilizable in green but acidic medium of scCO2 is reviewed. The strong base sites on mesoporous alumina and sulfated mesoporous alumina that had been generated by severe treatment at 773 K under vacuum (10?4 Torr) were not neutralized by the compressed Lewis acidic molecules of CO2, promoting a representative strong base-catalyzed reaction of the Tishchenko reaction as well as a typical base-catalyzed reaction of the Knoevenagel reaction in scCO2. Infrared spectroscopy of the adsorbed pyrrole, temperature-programmed desorption of CO2, and the poisoning by a very weak Brönsted acid of methanol have revealed that the average strengths of the base sites on mesoporous alumina and sulfated mesoporous alumina are weaker than that on conventional γ-alumina like JRC-ALO-4, but that they have a small number of strong base sites which function even in scCO2 medium. It was found that the addition of a slight amount of THF cosolvent into scCO2 remarkably accelerates the Tishchenko reaction over sulfated mesoporous alumina; the reaction rate in the scCO2–THF medium was 1.5-fold and 2-fold faster than those in ordinary organic solvents such as benzene and THF and that in pure scCO2, respectively. The unique structures of mesoporous alumina and sulfated mesoporous alumina have been fully characterized by N2 adsorption–desorption measurements and XRD analyses.  相似文献   

2.
This review describes the preparation, characterization and application of KNH2 loaded on alumina and KF loaded on alumina. These strong solid bases catalyze a variety of organic reactions in a very selective manner. The reactions include isomerizations of alkenes and alkynes, dimerization of alkynes, Tishchenko reaction, and the reaction of silanes to form of Si–C, Si–N and Si–O bonds.  相似文献   

3.
The coordination or ion pairing of the hydrogen-bonded anions H(CF3CO2)2- and H(CH3SO3)2- to NEt4+, Li+, Cu+, and/or Cu2+ was investigated. The structure of [Cu2(H(CH3SO3)2)4]n consists of centrosymmetric dimeric moieties that contain two homoconjugated (CH3SO2O-H...OSO2CH3)- anions per Cu2+ ion, forming typical Jahn-Teller tetragonally elongated CuO6 coordination spheres. The oxygen atoms involved in the nearly linear O-H...O hydrogen bonds (O...O approximately 2.62 A) are not coordinated to the Cu2+ ions. The structure of Cu2(CO)2(H(CF3-CO2)2)2 consists of pseudo-C2-symmetric dimers that contain one homoconjugated (CF3COO-H...OCOCF3)- anion per Cu+ ion, forming highly distorted tetrahedral Cu(CO)O3 coordination spheres. Three of the four oxygen atoms in each hydrogen-bonded H(CF3CO2)2- anion are coordinated to the Cu+ ions, including one of the oxygen atoms in each O-H...O hydrogen bond (O...O approximately 2.62 A). Infrared spectra (v(CO) values) of Cu(CO)(CF3CO2) or Cu(CO)(CH3SO3) dissolved in acetonitrile or benzene, with and without added CF3COOH or CH3SO3H, respectively, demonstrate that HA2- anions involving carboxylates or sulfonates are more weakly coordinating than the parent anions RCO2- and RSO3-. Direct current conductivities of THF solutions of Li(CF3CO2) containing varying concentrations of added CF3COOH further demonstrate that Li+ and NEt4+ ion pair much more weakly with H(CF3CO2)2- than with CF3CO2-.  相似文献   

4.
This review describes the preparation, characterization and application of KNH2 loaded on alumina and KF loaded on alumina. These strong solid bases catalyze a variety of organic reactions in a very selective manner. The reactions include isomerizations of alkenes and alkynes, dimerization of alkynes, Tishchenko reaction, and the reaction of silanes to form of Si–C, Si–N and Si–O bonds.  相似文献   

5.
Ohi H  Tachi Y  Itoh S 《Inorganic chemistry》2006,45(26):10825-10835
The structure and O2-reactivity of copper(I) complexes supported by novel ligands, Pye2 (1,3,5-triethyl-2,4-bis((N-benzyl-N-(2-(pyridin-2-yl)ethyl)-)aminomethyl)benzene), Pye3 (1,3,5-triethyl-2,4,6-tris((N-benzyl-N-(2-(pyridin-2-yl)ethyl))aminomethyl)benzene), MePym2 (1,3,5-triethyl-2,4-bis((N-benzyl-N-(6-methylpyridin-2-ylmethyl))aminomethyl)benzene), and MePym3 (1,3,5-triethyl-2,4,6-tris((N-benzyl-N-(6-methylpyridin-2-ylmethyl))aminomethyl)benzene) have been examined. The ligands are designed to construct mono-, di-, and trinuclear copper(I) complexes by connecting two or three pyridylalkylamine metal-binding sites to a 1,3,5-triethylbenzene spacer. Thus, the reaction of the ligands with [CuI(CH3CN)4]X (X = PF6, CF3SO3) or CuICl gave the expected mononuclear copper(I) complexes [CuI(Pye2)(CF3SO3)] (1) and [CuI(Pye3)](CF3SO3) (2), dinuclear copper(I) complex [CuI2(MePym2)(Cl)]CuICl2 (3), and trinuclear copper(I) complex [CuI3(MePym3)(CH3CN)3](CF3SO3)3 (4), the structures of which were determined by X-ray crystallographic analysis. The mononuclear copper(I) complexes, 1 and 2, exhibit a distorted three-coordinate T-shape structure and a trigonal planar structure, respectively, which are very close to the coordination geometry of the CuA site of PHM (peptidylglycine alpha-hydroxylating monooxygenase) and the CuB site of CcO (cytochrome c oxidase). Notably, 1 and 2 showed a significantly high oxidation potential (990 mV vs SCE), thus showing virtually no reactivity toward O2. On the other hand, the metal centers of the dinuclear and trinuclear copper(I) complexes, 3 and 4, exhibit a distorted trigonal planar geometry and a trigonal pyramidal geometry, respectively. In contrast to the mononuclear copper(I) complexes, these dinuclear and trinuclear copper(I) complexes reacted with O2 to induce an aromatic ligand hydroxylation reaction involving an NIH-shift of one of the ethyl substituents on the benzene spacer. The NIH-shift of the alkyl substituent on the aromatic ring is strong evidence of the electrophilic aromatic substitution mechanism, although the active oxygen intermediate could not be directly detected during the course of the reaction. The biological relevance of the copper(I) complexes is also discussed on the basis of structure and O2-reactivity.  相似文献   

6.
Rate constants for hydrogen atom transfer reactions of the water, deuterium oxide, and methanol complexes of bis(cyclopentadienyl)titanium(III) chloride with the secondary alkyl radical 1-cyclobutyldodecyl (2) were determined using indirect kinetic methods. The rate constant for reaction of Cp2Ti(III)Cl-H2O in THF at ambient temperature was 1.0 x 10(5) M(-1) s(-1), and the kinetic isotope effect was kH/kD = 4.4. In benzene containing 0.95 M methanol, the rate constant for reaction of the Cp2Ti(III)Cl-MeOH at ambient temperature was 7.5 x 10(4) M(-1) s(-1). An Arrhenius function for reaction of the Cp2Ti(III)Cl-H2O complex in THF was log k = 9.1 - 5.5/2.3 RT (kcal/mol). The entropic term for reaction of Cp2Ti(III)Cl-H2O was normal, whereas the entropic term previously found for reaction of the Et3B-H2O complex with radical 2 was unusually small (Jin, J.; Newcomb, M. J. Org. Chem. 2007, 72, 5098).  相似文献   

7.
The stoichiometry and the kinetics of oxidation of the cyanide complexes M(CN)n4- (M = Fe(II), Ru(II), Os(II), Mo(IV), and W(IV)) by the peroxydisulfate ion, S2O8(2-), and by the much more strongly oxidizing fluoroxysulfate ion, SO4F-, were studied in aqueous solutions containing Li+. Reactions of S2O8(2-) with M(CN)n4- are known to be strongly catalyzed by Li+ and other alkali metal ions, and this applies also to the corresponding reactions of SO4F-. The primary reactions of S2O8(2-) and SO4F- have both been found to be one-electron processes in which the equally strong O-O and O-F bonds are broken. The primary reaction of S2O8(2-) consists of a single step yielding M(CN)n3-, SO4-, and SO42-, whereas the primary reaction of SO4F- comprises two parallel one-electron steps, one leading to M(CN)n3-, SO4-, and F- and the other yielding M(CN)n-1(2-), CN-, SO4- and F-. The relationship between the rate constants and the standard free energies of reaction for the Li+-catalyzed reactions of SO4F- and S2O8(2-) with M(CN)n(4-), and for the uncatalyzed reactions of S2O8(2-) with bipyridyl and phenanthroline complexes MLn2+ (M = Fe(II), Ru(II), and Os(II)) studied previously, suggests that the intrinsic barrier for all three sets of reactions is similar, i.e., unaffected by the Li+ catalysis, and that the electron transfer and the breakage of the O-O and O-F bonds are concerted processes.  相似文献   

8.
The reaction of an alkali metal aluminohydride MAlH4 (M = Li, Na) with N,N'-bis-(tert-butyl)sulfamide or N,N'-bis-(benzyl)sulfamide in THF produces the complex ions (Al[SO2(NR)2]2)- (R = tBu, Bn). The X-ray structures of [Li(THF)2(Al[SO2(NtBu)2]2)] infinity (1), [Na(15-crown-5)][Al(SO2(NtBu)2)2], (2) and ([Na(15-crown-5)][O2S(mu-NBn)2Al(mu-NBnSO2NBn)])2 (3.3THF) are reported. The two diazasulfate ligands [SO2(NtBu)2]2- are N,N' chelated to Al3+ in both 1 and 2. In the lithium derivative 1 the spirocyclic (Al[SO2(NtBu)2]2)- anions are bridged by the bis-solvated cations Li(THF)2+ to give a polymeric strand. In the sodium salt 2 the complex anion is O,O' chelated to Na+, which is further encapsulated by a 15-crown-5 ligand to give a monomeric ion-pair complex. By contrast, the benzyl derivative 3 forms a dimer in which the terminal [SO2(NBn)2]2- ligands are (N,N'),(O,O') bis-chelated to Al3+ and Na+, respectively, and the bridging ligands adopt a novel N,O-chelate, N'-monodentate bonding mode. The central core of 3 consists of two four-membered AlOSN rings bridged by two NtBu groups. Crystal data: 1, orthorhombic, Pna2(1), a = 20.159(5) degrees, b = 10.354(3) degrees, c = 15.833(4) degrees, alpha = beta = gamma = 90 degrees, V = 3304.7(15) A3, Z = 4; 2, monoclinic, P2(1)/n, a = 16.031(2) A, b = 9.907(2) A, c = 23.963(4) A, beta = 103.326(2) degrees, Z = 4; 3, triclinic, P1, a = 12.7237(11) A, b = 14.0108(13) A, c = 16.2050(14) A, alpha = 110.351(2) degrees, beta = 111.538(2) degrees, gamma = 97.350(2) degrees, Z = 1.  相似文献   

9.
The rate of the Diels-Alder reaction between N-ethylmaleimide and 9-hydroxymethylanthracene in supercritical carbon dioxide (scCO(2)) was determined by following the disappearance of 9-hydroxymethylanthracene with in situ UV/vis absorption spectroscopy. The reaction conditions were 45-75 degrees C and 90-190 bar, which correspond to fluid densities (based on pure carbon dioxide) ranging between approximately 340 and 730 kg m(-3). The measured reaction rate at low scCO(2) fluid densities was nearly 25x faster than that reported in acetonitrile at the same temperature (45 degrees C). An inverse relationship between reaction rate and fluid density/pressure was observed at all temperatures in scCO(2). The apparent activation volumes were large and positive (350 cm(3) mol(-1)) and only a weak function of reduced temperature. A solvophobic mechanism analogous to those observed in conventional solvents is postulated to describe (a) the rate acceleration observed for this reaction in scCO(2) relative to that in acetonitrile, (b) the observed relationship between reaction rate and pressure/temperature/density, and (c) the large, positive activation volumes. Solubility measurements in scCO(2), rate measurements in conventional solvents, and an empirical correlation are used to support this theory. Our results advance the general understanding of reactivity in supercritical fluids and provide a rationale for selecting reactions which can be accelerated when conducted in scCO(2).  相似文献   

10.
窄分布聚苯乙烯在NDG(硅烷化刚性硅胶)柱上,以苯、甲苯、THF和MEK作为淋洗剂时,流体力学体积?[η]和校正的流体力学体积?[η]/f(θ)能否作为普适校正参数,关键在淋洗剂的极性。若淋洗剂的极性为零或很小,则成立。由于淋洗剂极性分子受填料表面残存静电作用力的吸引,它的表面上形成一个受束缚的淋洗剂液层,减小了孔道的有效尺寸,使logM[η]-Ve线和logM[η]/f(θ)-Ve线向Ve减小方向移动。  相似文献   

11.
Meng X  Song Y  Hou H  Han H  Xiao B  Fan Y  Zhu Y 《Inorganic chemistry》2004,43(11):3528-3536
Four novel cadmium-btx (btx = 1,4-bis(triazol-1-ylmethyl)benzene) coordination polymers [Cd(btx)(2)(NO(3))(2)](n)(1), [Cd(btx)(2)Cl(2)](n)(2), [Cd(btx)(SO(4))(H(2)O)(2)](n)(3), and [Cd(btx)(S(2)O(7))(H(2)O)](n)(4) have been prepared by hydrothermal reaction (140 or 180 degrees C) and characterized. Both 1 and 2 have two-dimensional rhombohedral grid structures, 3 possesses a two-dimensional rectangular grid structure, and 4 displays a three-dimensional framework, which is formed by btx bridging parallel layers. To the author's best knowledge, polymer 4 is the first Cd(II) polymer in which the Cd(II) ion is eight-coordinated in a hexagonal bipyrimidal geometry. In addition, we studied the effects of temperature on the hydrothermal reaction system of btx and CdSO(4) and found that different products can be obtained at different temperatures. Furthermore, polymer 3 possesses a very strong third-order NLO absorptive effect with an alpha(2) value of 1.15 x 10(-)(9) m W(-1). Polymers 2-4 display strong fluorescent emissions in the solid state at room temperature. The DTA and TGA results of the four polymers are in agreement with the crystal structures.  相似文献   

12.
The direct reaction of europium with 2-propanol and phenols has been investigated under a variety of conditions. The reaction of europium metal with 2,6-dimethylphenol and 2,6-diisopropylphenol in 2-propanol at reflux revealed that polymetallic europium complexes could be generated by this method. Hx[Eu8O6(OC6H3Me2-2,6)12(OiPr)8], 1, and H5[Eu5O5(OC6H3iPr2-2,6)6(NCCH3)8], 2, were isolated by recrystallization in the presence of hexanes and acetonitrile, respectively, and characterized by X-ray crystallography. Complex 1 has a cubic arrangement of europium ions with face-bridging mu 4-O donor atoms, edge-bridging mu-O(phenoxide/phenol) ligands, and terminal O(isopropoxide/2-propanol) ligands. Complex 2 is mixed valent and has a square pyramidal europium core with four Eu(II) ions at the basal positions and one Eu(III) ion at the apex. Since these reactions gave complicated mixtures of products from which 1 and 2 could only be obtained in low yields, direct reactions under less forcing reaction conditions were investigated. Europium reacts slowly at room temperature to form arene-soluble divalent [Eu(OiPr)2(THF)x]n, 3. Complex 3 reacts with 2,6-dimethylphenol to form the arene-insoluble complex (H[Eu(OC6H3Me2)2(OiPr)])n, 4. Recrystallization of 4 in the presence of THF results in the crystallographically characterizable divalent trimetallic complex [Eu(OC6H3Me2-2,6)2(THF)2]3, 5, which has an unusual linear metal geometry. In the presence of HOiPr at ambient conditions in the glovebox, crystals of 5 slowly convert to the mixed valent H10[Eu8O8(OC6H3Me2-2,6)10(OiPr)2(THF)6], 6, which was found to have a cubic arrangement of europium atoms similar to 1 by X-ray crystallography. Complex 4, upon heating under vacuum, followed by reaction with THF, forms the arene-soluble divalent complex H18([Eu9O8(OC6H3Me2-2,6)10(THF)7][Eu9O9(OC6H3Me2-2,6)10(THF)6]), 7, which contains two types of capped cubic arrangements of europium ions in the solid state.  相似文献   

13.
考察了固体碱不同的碱性位对丙酮和碳酸二甲酯反应的影响,并对反应在不同碱性位上的反应机理进行了推测.实验结果表明,由表面羟基引起的弱碱位有利于丙酮自身缩合反应的进行,主产物为二丙酮醇、4-甲基-3-戊烯-2-酮和4-甲基4-戊烯-2-酮;Lewis酸碱离子对有利于碳酸二甲酯的甲基化反应的发生,主产物为2-甲氧基丙烯;而由固体碱表面配位不饱和的O^2-所造成的强碱位有利于碳酸二甲酯的甲氧基羰基化产物的生成,主产物为乙酰乙酸甲酯;同时发现各种产物的收率与对应的各碱性位的碱量之间均具有较好的线性关系.  相似文献   

14.
Tungsten hexachloride is a potent halogen-transfer agent, capable of reacting directly with salicylic acid to generate a tungsten oxo fragment and salicoyl chloride. As a result, oxo complexes dominate the chemistry of tungsten(VI) salicylates. Both mono- and disalicylate substituted tungsten oxo complexes are accessible. The Br?nsted free acid W(=O)Cl(Hsal)(sal) complex is a sparingly soluble, presumably polymeric material that can be dissolved in THF. The THF adduct has been characterized by NMR spectroscopy, although an X-ray crystallographic study indicates that the product cocrystallizes with a structurally analogous d(1) WCl(2)(Hsal.THF)(sal) byproduct. The remaining chloride ligand in W(=O)Cl(Hsal)(sal) is replaced by a bridging oxo unit when the reaction contains a significant excess of salicylic acid. The product "linear" oxo bridged ditungsten complex, [W(=O)(Hsal)(sal)](2)O, forms intramolecular hydrogen bonds, accounting for its high solubility in noncoordinating solvents. An X-ray study shows that the intramolecular Hsal.sal hydrogen bonding in this complex accommodates a more linear W-O-W arrangement than does a previously observed class of isostructural diolate derivatives. Tungsten oxo tetrachloride, formed in the initial reaction between salicylic acid and WCl(6), also reacts with the salicoyl chloride byproduct to generate tungsten salicoylate (OAr-2-COCl) complexes.  相似文献   

15.
A new family of dicopper(I) complexes [CuI2RL](X)2 (R=H, 1X, R=tBu, 2X and R=NO2, 3X, X=CF3SO3, ClO4, SbF6, or BArF, BArF=[B{3,5-(CF3)2C6H3}4]-), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer, has been prepared and characterized, and its reaction with O2 has been studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid-state structures of 1ClO4, 2CF3SO3, 2ClO4, and 3BArF.CH3CN have been established by single-crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in the solid state while 2CF3SO3, 2ClO4, and 3BArF.CH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(mu-O)2(RL)]2+ 1-3(O2) and [CuIII2(mu-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively, that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(mu-O)2 form with respect to the CuII2(mu-eta2:eta2-O2) isomer. The reaction of 1X, X = CF3SO3 and BArF, with O2 in acetone has been studied by stopped-flow UV-vis exhibiting an unexpected very fast reaction rate (k=3.82(4)x10(3) M-1 s-1, DeltaH=4.9+/-0.5 kJ.mol-1, DeltaS=-148+/-5 J.K-1.mol-1), nearly 3 orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X=CF3SO3 and BArF) are discussed and compared with those associated with selected examples of reported models of O2-processing copper proteins. A synergistic role of the copper ions in O2 binding and activation is clearly established from this analysis.  相似文献   

16.
van der Waals cluster (SO2)n is investigated by using single photon ionization of a 26.5 eV soft x-ray laser. During the ionization process, neutral clusters suffer a small fragmentation because almost all energy is taken away by the photoelectron and a small part of the photon energy is deposited into the (SO2)n cluster. The distribution of (SO2)n clusters decreases roughly exponentially with increasing cluster size. The photoionization dissociation fraction of I[(SO2)(n-1)SO+] / I[(SO2)n+] decreases with increasing cluster size due to the formation of cluster. The metastable dissociation rate constants of (SO2)n+ are measured in the range of (0.6-1.5) x 10(4) s(-1) for cluster sizes 5< or =n< or =16. Mixed SO2-H2O clusters are studied at different experimental conditions. At the condition of high SO2 concentration (20% SO2 partial pressure), (SO2)n+ cluster ions dominate the mass spectrum, and the unprotonated mixed cluster ions (SO2)nH2O+ (1< or =n< or =5) are observed. At the condition of low SO2 concentration (5% SO2 partial pressure) (H2O)nH+ cluster ions are the dominant signals, and protonated cluster ions (SO2)(H2O)nH+ are observed. The mixed clusters, containing only one SO2 or H2O molecule, SO2(H2O)nH+ and (SO2)nH2O+ are observed, respectively.  相似文献   

17.
The novel intramolecularly NH...O hydrogen-bonded Ca(II)-aryl sulfonate complex, [Ca2(SO3-2-t-BuCONHC6H4)2(H2O)4]n(2-t-BuCONHC6H4SO3)2n (1), sulfonate anion, (HNEt3)(SO3-2-t-BuCONHC6H4) (2a), (PPh4)(SO3-2-t-BuCONHC6H4) (2b), (n-Bu4N)(SO3-2-t-BuCONHC6H4) (2c), and sulfonic acid, 2-t-BuCONHC6H4SO3H (3), were synthesized. The structures of 1, 2a, and 2b depict the presence of the formation of NH...O hydrogen bonds between the amide NH and S-O oxygen for a series of compounds as determined by IR and 1H NMR analyses both in the solid state and in the solution state. Thus, the NH...O hydrogen bonds with neutral amide groups are available for investigation of the electronic state of the O- anion. The combined data from the IR and 1H NMR spectra indicate that the sulfonic acid, sulfonate anion, and Ca(II) complex have a substantially weak intramolecular NH...O hydrogen bond between the SO3 oxygen and amide NH. In the detailed comparison with the intense NH...O hydrogen bonds for the carboxylate, weak NH...O hydrogen bonds for sulfonate is due to the strong conjugation of the SO3- group with the lower nucleophilicity.  相似文献   

18.
Ikuta Y  Tomoda S 《Organic letters》2004,6(2):189-192
[reaction: see text] The origin of exclusive exo-stereochemistry in the alkylation of Meyers-type enolate 2 has been studied. It was found that the intramolecular complex with a strong Li...O(ring) interaction (the O-complex) may be responsible as the major enolate species in tetrahydrofuran (THF). The transition state of the O-complex leading to exo-stereochemistry is found to be the most favorable process in THF.  相似文献   

19.
Fortier S  Wu G  Hayton TW 《Inorganic chemistry》2008,47(11):4752-4761
Addition of 6 equiv of LiOtBu to a THF/Et2O solution of UCl4 at -25 degrees C generates [Li(THF)]2[U(OtBu)6] (1) in 61% yield. 1 is soluble in polar organic solvents and is stable for several days in THF. However, 1 slowly decomposes in benzene or hexanes, forming the dinuclear uranium(IV) species [Li(THF)][U2(OtBu)9] (2) as one of the decomposition products. Alternatively, 2 can be directly prepared in moderate yield by the addition of 4.5 equiv LiOtBu to UCl4 in hexanes/THF at room temperature. The decomposition of 1 has been studied by 1H and 7Li{1H} NMR spectroscopies to elucidate the nature of this transformation. Oxidation of 1 occurs readily in the presence of 0.5 or 1 equiv of I2 to give [Li(Et2O)][U(OtBu)6] (3) and U(OtBu)6 (4), respectively, in good yields. Alternately, 3 can be generated by comproportionation of 1 and 4. 1-4 have been fully characterized, including analysis by X-ray crystallography. In the solid-state these complexes possess large U-O-Cq bond angles, suggestive of a significant U-O pi interaction. In addition, we have studied the redox properties of 4 by cyclic voltammetry.  相似文献   

20.
Catalytic behavior of solid bases for mixed Tishchenko reaction in which an equimolar mixture of two different aldehydes is allowed to react was investigated employing the combinations of benzaldehyde and pivalaldehyde, pivalaldehyde and cyclopropanecarbaldehyde, and cyclopropanecarbaldehyde and benzaldehyde. The reactions were performed at 353K for 4h in vacuo without solvent using 5mmol of each aldehyde and 100mg of solid base catalyst. For all the combinations, the catalytic activity of alkaline earth oxides increased in the order of BaOMgO2O3, ZrO2, ZnO, -alumina, hydrotalcite, KF/alumina, and KOH/alumina produced either no amount or very small amounts of cross-esterification and self-esterification products. Quantum chemical calculations carried out at the PM3-MO level for the positive charges on the carbonyl carbon atoms of aldehydes and the structure parameters of the active species for the ester formations indicated that the selectivities to four Tishchenko dimers over MgO and CaO are determined primarily in the step of the nucleophilic addition of the active species (PhCH2O-, tBuCH2O-, and C3H5CH2O-) to the carbonyl carbon atoms of aldehydes. The reaction of the aldehyde having more positively charged and sterically less hindered carbonyl carbon atom with the active species having less hindered oxygen atom proceeds faster.We also attempted the application of solid base catalysts to the challenging Tishchenko reaction of furfural, and excellent results were obtained with CaO and SrO. For instance, when furfural (10mmol) was treated with SrO (100mg) without solvent at 353K for 6h in vacuo, almost quantitative conversion to the corresponding ester was accomplished. Furthermore, application of SrO to the Tishchenko reaction of 3-furaldehyde was carried out successfully. The catalytic systems were also successfully applicable to the intramolecular Tishchenko reaction (lactonization) of o-phthalaldehyde to phthalide. For example, treatment of o-phthalaldehyde (1mmol) with CaO (50mg) in benzene (1mL) solvent at 313K under N2 produced phthalide quantitatively in a short time of 15min. We finally refer to the perspective of application of solid base catalysts to Tishchenko reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号