首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The dielectric, elastic and electrostrictive constants of polyvinylidene fluoride (pvdf) are influenced by thermal molecular motion, particularly at the glass transition temperature. High temperature poling is caused by both dipolar orientation and space-charge redistribution. Low temperature poling and dielectric hysteresis under a strong electric field are caused by crystalline dipolar orientation. The ferroelectric nature of pvdf is confirmed by x-ray and infrared analyses. The piezoelectric constants for a single crystal are theoretically calculated in agreement with experimental values. The piezoelectricity in poled films originates from the intrinsic piezoelectricity of the crystal and the residual polarization in the crystal coupled with electrostriction and dimensional change in the non-crystalline phase.  相似文献   

2.
The dielectric properties of multilayer ferroelectric Langmuir-Blodgett films based on the copolymer vinylidene fluoride with trifluoroethylene with 70/30 composition are investigated. Good agreement with theoretical models on the basis of the phenomenological Landau-Ginzburg approach is demonstrated for the first time for ultrathin films. Expressions describing the temperature variation of the permittivity in the temperature range of hysteresis and giving quantitative agreement with experimental data are obtained. It is shown that the Langmuir-Blodgett films are conducting. This conductivity does not depend on the frequency of the field. The results are explained by the fact that the motion of charge in the films is not bounded by domain walls. The jumps observed in the frequency dispersion at volume and low-temperature (surface) phase transitions are explained by a sharp increase in the relaxation times at the transition into the ferroelectric state.  相似文献   

3.
The value of the intrinsic ferroelectric coercive field is obtained independently, from general energy considerations and from the predictions of several models of the ferroelectric state. All predictions yield a value of the order of the depolarization field, which is equal to the spontaneous polarization divided by the dielectric permittivity, and are consistent with the recent measurements of the intrinsic ferroelectric coercive field in ultrathin Langmuir-Blodgett films of copolymers of polyvinylidene fluoride with trifluoroethylene. Prior studies succeeded only in measuring the much smaller extrinsic coercive fields, which are limited by nucleation processes and domain motion.  相似文献   

4.
In the last few years it has been shown that polyvinylidene fluoride, a polymer which can.readily be formed into very thin, flexible, and transparent films, is a ferroelectric material. The availability of a ferroelectric material in this unusual form has led to a large number of possible new applications, and the Japanese company, Pioneer Electronic Corporation, has already developed a commercial product.1 They are producing headphones in which the active element is an 8-pm-thick film of polyvinylidene fluoride. Indicative of the kind of creativity this new material permits, the headphones do not use the change in thickness of the film at all. The polymer film is stretched over a flexible polyurethane foam and application of a voltage causes a change in the area of the film so that the foam, functioning like a spring, is either compressed or allowed to expand, depending on the polarity of the applied voltage.  相似文献   

5.
We determine the effects of film thickness, epitaxial strain and the nature of electrodes on ferroelectric phase transitions in ultrathin films of BaTiO3 using a first-principles effective Hamiltonian in classical molecular dynamics simulations. We present results for polarization and dielectric properties as a function of temperature and epitaxial strain, leading to size-dependent temperature-strain phase diagram for the films sandwiched between ‘perfect’ electrodes. In the presence of non-vanishing depolarization fields when non-ideal electrodes are used, we show that a stable stripe-domain phase is obtained at low temperatures. The electrostatic images in the presence of electrodes and their interaction with local dipoles in the film explain these observed phenomena.   相似文献   

6.
The fabrication of high quality thin films of poly (vinylidene fluoride) embedded with multiwalled carbon nanotubes using pulsed laser deposition technique is reported. The prepared films were characterized for structural, morphology and dielectric properties. The morphology analysis revealed uniform dispersion of multiwalled carbon nanotubes throughout the polymer matrix. X-ray diffraction results suggested that the poly (vinylidene fluoride) film is in amorphous phase while addition of multiwalled carbon nanotubes showed presence of crystalline peaks in the nanocomposites films. It was interesting to note that the nanocomposite films exhibits significant enhancement of the ferroelectric β-phase as evidenced by the X-ray diffraction and Fourier transform infrared spectroscopy results. The dielectric analysis shows a remarkable enhancement in the dielectric permittivity of nanocomposites with lower loss and conductivity level. The results can be attributed to the formation of minicapacitor network and relatively higher percolation threshold in the nanocomposites.  相似文献   

7.
Under taking into account both stress and surface effects, an extended Landau–Devonshire theory is developed to investigate the phase structures and ferroelectric stability in barium titanate ultrathin films. The phase diagrams of temperature-stress, film thickness-stress and polarization-film thickness are calculated. For the surface polarization smaller than the bulk, the paraelectric phase starts at temperature below the bulk Curie temperature under small stresses and the ferroelectric phases can be stabilized in the ultrathin films under large stresses. For the surface polarization larger than the bulk, the paraelectric phase appears at temperature above the bulk Curie temperature and the ferroelectricity can be sustained in the ultrathin films by the “superpolarized” surface layer.  相似文献   

8.
The dependence of ferroelectric phase transition temperature as a function of strontium substitution in lead titanate zirconate thin films (referred here as PSZT) on platinum-coated silicon substrates was investigated. The dielectric study reveals that the material undergoes a diffuse type ferroelectric phase transition that depends on the substitution of Sr for Pb in PZT. At 100 kHz, the phase transition temperatures were 633, 613 and 516 K for PSZT10, PSZT20 and PSZT30 thin films, respectively. On the other hand, the results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. The diffusivity increases with increasing Sr contents in the studied composition range. The experimental data obtained from measurements of the dielectric constant as a function of temperature and frequencies showed a classical behavior of ferroelectric phase transition in PSZT thin films, rather than a relaxor ferroelectric phase transition. The transition temperature decreases with increasing Sr contents due to the decrease in grain size, lattice decrease and local structural disorder.  相似文献   

9.
Relaxation processes and structural transitions in nonstretched and uniaxially stretched films of poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) and its homopolymer polyvinylidene fluoride (PVDF) for comparison were investigated with the aim of understanding the electromechanical properties of this lower-modulus ferroelectric copolymer. The mechanical and the dielectric response at the glass transition (?? a relaxation) exhibit similar temperature dependence of the relaxation time, whereas mechanical and dielectric processes above the glass transition are not related. They represent a continuous softening process within the amorphous phase and the dielectric ?? c relaxation, respectively. The latter is attributed to conformational changes of VDF segments in lamellae of spherulites constituting the nonpolar crystalline ?? phase. Furthermore, there is a contribution from melting of secondary crystallites formed in the amorphous phase during annealing or storage. Mechanically, this transition appears in nonstretched and stretched films as an accelerated decrease of the elastic modulus that terminates the rubber plateau. Dielectrically, this transition becomes visible as a frequency-independent loss peak only in stretched films, because stretching removes the ?? c relaxation, which superimposes the transition in nonstretched films. Melting of secondary crystallites is shown to appear in the homopolymer, too, though less pronounced because of more complete primary crystallisation. Stretching increases the modulus above the glass transition only slightly, and it does not significantly influence the softening process. On the other hand, stretching causes a spontaneous polarisation and introduces order within the amorphous phase, rendering it more polar. Melting of secondary crystallites provides an additional contribution to the polarisation. These findings may explain the relatively high electromechanical activity of P(VDF-HFP) but also its relatively low thermal stability. Moreover, they may be important for correct procedure and analysis of temperature-dependent dielectric measurements on partially crystalline polymers, in particular on those with less favourable sterical conditions for primary crystallisation.  相似文献   

10.
The antiferroelectric (Pb0.985Sm0.01) (Zr1-xTix)O3 (Ti-PSZO) thin films were synthesized on Pt(111)/Ti/SiO2/Si substrates using a chemical solution deposition method. The films were crystallized in the perovskite phase with a preferential orientation along (111) direction. With Ti doping in PSZO, a gradual transformation from antiferroelectric to ferroelectric phase transition was noticed at room temperature owing to the Ti doping induced lattice distortion. The phase transition has been confirmed through the P - E hysteresis loops, X-ray diffraction (peak shifting), capacitance-voltage measurements, and Raman scattering analysis. The thin film with Ti = 0.15 doping displayed a ferroelectric behavior with high dielectric constant and large dielectric tunability of about 62%. Also, Ti doping altered the Curie temperature (Tc) and enhanced the order of dielectric diffuseness. It is believed that Ti-doping in PSZO is an effective way to induce an antiferroelectric - ferroelectric phase transition and to tailor the electrical characteristics of PSZO thin films.  相似文献   

11.
A ferroelectric bilayer film consisting of two different ferroelectric constituent films with a transition layer within each constituent film and interfacial coupling between two materials is investigated based on the Ginzburg-Landau-Devonshire phenomenological theory. A parameter α, which describing the differences between physical properties of two constituent films is first introduced in our paper, and reflects a more realistic situation compared to the previous treatments assuming the same two constituent films. We study the polarization and dielectric susceptibility properties of the ferroelectric bilayer film with two different constituent films. The results present some interesting phenomena due to the introduction of parameter α.  相似文献   

12.
The interfacial screening charge that arises to compensate electric fields of dielectric or ferroelectric thin films is now recognized as the most important factor in determining the capacitance or polarization of ultrathin ferroelectrics. Here we investigate using aberration-corrected electron microscopy and density-functional theory to show how interfaces cope with the need to terminate ferroelectric polarization. In one case, we show evidence for ionic screening, which has been predicted by theory but never observed. For a ferroelectric film on an insulating substrate, we found that compensation can be mediated by an interfacial charge generated, for example, by oxygen vacancies.  相似文献   

13.
The ferroelectric phase transition on the free surface of a polymer ferroelectric Langmuir-Blodgett film was studied by the optical second harmonic generation (SHG) technique. A hysteresis in the temperature dependence of the SHG intensity observed for a multilayer film of a poly(vinylidene fluoride)-trifluoroethylene copolymer in the vicinity of T≈15°C is a manifestation of the first-order ferroelectric phase transition in the topmost surface monolayer of the film.  相似文献   

14.
In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.  相似文献   

15.
The influence of electrodes on the dielectric susceptibility and pyroelectric properties of a ferroelectric thin film with surface transition layers has been investigated within the framework of Landau-Khalatnikov dynamic theory. The contribution of the electrodes is reflected by the depolarization field in the free-energy function. The large electrode effect implies the strong depolarization field in ferroelectric thin films. The results show that the electrode materials can greatly impact the dynamic dielectric and pyroelectric properties of a ferroelectric thin film.  相似文献   

16.
In the paper we consider size effects on phase transitions and polar properties of thin antiferroelectric films. We extend the phenomenological approach proposed by Kittel for thin films allowing for gradient (correlation) energy and depolarization field energy. Surface piezoelectric effect as well as misfit strain appear due to lattice constants mismatch between the film and its substrate. Direct variational method is used to derive the free energy with renormalized coefficients depending on the film thickness. Obtained free energy expression allows the calculation of phase diagrams and all electro-physical properties by a conventional minimization procedure. Approximate analytical expressions for the paraelectric–antiferroelectric–ferroelectric transition temperature dependences on film thickness, polarization gradient coefficient, and extrapolation lengths were obtained. The thickness dependence of the electric field critical value that causes antiferroelectric–ferroelectric phase transition was calculated. Under favorable conditions the antiferroelectric phase at first transforms into ferroelectric one and then into paraelectric phase with the decrease of the film thickness. Proposed theoretical consideration explains the experimental results obtained in antiferroelectric PbZrO3 thin films.  相似文献   

17.
《Current Applied Physics》2014,14(5):757-760
CaTiO3 is a well-known incipient ferroelectric material that does not undergo a ferroelectric phase transition in spite of the intriguing dielectric constant behavior. Especially, unlike a prototypical incipient ferroelectric SrTiO3, the paraelectric state of CaTiO3 cannot be easily destroyed by small perturbations, including cation doping and epitaxial strain. We present that a nearly strain-free epitaxial CaTiO3 film grown at a low oxygen partial pressure exhibits polarization–voltage hysteresis loops and the distinct difference of piezoresponse force microscopy phase signals, implying that a ferroelectric phase is induced. Such results are shown even at room temperature. We suggest that the observed ferroelectric behavior in CaTiO3 film comes from the defect dipoles composed of vacancies inside the film. Using electron-probe microanalysis and optical absorption spectra measurements, we found that CaTiO3 film has considerable Ca and O vacancies, forming the localized defect state in electronic structure. This work highlights the importance of vacancies and their clusters, such as defect dipoles, in understanding the electronic properties of perovskite oxide thin films, including ferroelectricity.  相似文献   

18.
A comparative study of the lattice dynamic upon phase transitions in a polycrystalline Ba0.8Sr0.2TiO3 (BST) film on a Pt substrate and in epitaxial BST films grown on various sections of an MgO substrate has been performed by Raman spectroscopy. It has been found that different sequences of phase transitions take place in these films. The BST/Pt films demonstrate the same sequence of phase transitions that is observed in the bulk ceramics. The hardening of a soft mode in BST/(001)MgO and BST/Pt films shows that the transition from the tetragonal ferroelectric phase to the paraelectric phase has features of the displacement-type phase transition and also the order–disorder phase transition. When approaching the ferroelectric transition temperature, the soft mode in the BST/(111)MgO film is softened, following the Cockran law, which indicates the displacement-type phase transition.  相似文献   

19.
Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. On the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE–PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. PACS 77.80.Bh; 77.55.+f; 78.30.-j; 77.80.-e; 68.55.-a  相似文献   

20.
外延铁电薄膜相变温度的尺寸效应   总被引:1,自引:0,他引:1       下载免费PDF全文
周志东  张春祖  张颖 《物理学报》2010,59(9):6620-6625
考虑外延钙钛矿型铁电薄膜内的等效应力、表面晶格变化和表面电荷引起的退极化效应等机电耦合边界条件,利用铁电薄膜系统的动态金茨堡-朗道方程(DGL),系统分析和讨论了外延铁电薄膜相变温度与临界相变厚度的尺寸效应.结果表明,铁电薄膜相变温度与临界相变厚度完全依赖于各种与薄膜厚度相关的力电耦合边界条件.也给出了BaTiO3外延铁电薄膜相变温度在各种边界条件下随厚度的变化,从结果看出,本文的分析与结论更符合实验数据. 关键词: 尺寸效应 外延铁电薄膜 相变温度 力电耦合边界  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号