首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The propagation of wave envelopes in two‐dimensional (2‐D) simple periodic lattices is studied. A discrete approximation, known as the tight‐binding (TB) approximation, is employed to find the equations governing a class of nonlinear discrete envelopes in simple 2‐D periodic lattices. Instead of using Wannier function analysis, the orbital approximation of Bloch modes that has been widely used in the physical literature, is employed. With this approximation the Bloch envelope dynamics associated with both simple and degenerate bands are readily studied. The governing equations are found to be discrete nonlinear Schrödinger (NLS)‐type equations or coupled NLS‐type systems. The coefficients of the linear part of the equations are related to the linear dispersion relation. When the envelopes vary slowly, the continuous limit of the general discrete NLS equations are effective NLS equations in moving frames. These continuous NLS equations (from discrete to continuous) also agree with those derived via a direct multiscale expansion. Rectangular and triangular lattices are examples.  相似文献   

2.
We study the existence of periodic moving waves on two-dimensional periodically forced lattices with linear coupling between nearest particles and with periodic nonlinear substrate potentials. Such discrete systems can model molecules adsorbed on a substrate crystal surface. Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 1, pp. 127–139, January, 2008.  相似文献   

3.
利用辛数学方法分析了质量-弹簧非线性周期结构链中弹性波的传播问题.首先利用能量方法得到频域动力方程,随后通过小量变换将非线性动力方程线性化,得到辛矩阵,进而通过求解辛矩阵的本征值问题来研究波的传播性能.质量-弹簧模型中的弹簧刚度非线性对结构链的传播特性影响很大,研究发现非线性明显改变了周期结构的传播性能,而且不同于线性结构,非线性结构的传播特性与入射波强度有关.数值算例表明随着非线性强度及入射波强度的增大,传播通带宽度逐渐减小,禁带宽度逐渐增大.当入射波强度增大到一定值时,弹性波无法在结构中进行传播.与一般递归方法的比较分析,验证了辛数学方法在非线性周期结构波传播问题中的有效性与优越性.  相似文献   

4.
In nonlinear optical systems quasi-monochromatic waves satisfy the classical, constant dispersion and dispersion managed nonlocal, nonlinear Schrödinger equations, both of which exhibit localized pulse solutions. Current research has shown that mode-locked lasers are also described by dispersion managed equations. In spatial systems recent developments have attracted considerable interest in 2D photonic lattices. A computational method is introduced to find these and other localized waves in nonlinear optical media with vanishing and non-vanishing boundary conditions.  相似文献   

5.
Propagation of nonlinear shear horizontal (SH) waves in a homogeneous, isotropic and incompressible elastic plate of uniform thickness is considered. The constituent material of the plate is assumed to be generalized neo-Hookean. By employing a perturbation method and balancing the weak nonlinearity and dispersion in the analysis, it is shown that the nonlinear modulation of waves is governed asymptotically by a nonlinear Schr?dinger (NLS) equation. Then the effect of nonlinearity on the propagation characteristics of asymptotic waves is discussed on the basis of this equation. It is found that, irrespective of the plate thickness, the wave number and the mode number, when the plate material is softening in shear then the nonlinear plane periodic waves are unstable under infinitesimal perturbations and therefore the bright (envelope) solitary SH waves will exist and propagate in such a plate. But if the plate material is hardening in shear in this case nonlinear plane periodic waves are stable and only the dark solitary SH waves may exist.  相似文献   

6.
In this paper, the Exp-function method is employed to the Zakharov-Kuznetsov equation as a (2 + 1)-dimensional model for nonlinear Rossby waves. The observation of solitary wave solutions and periodic wave solutions constructed from the exponential function solutions reveal that our approach is very effective and convenient. The obtained results may be useful for better understanding the properties of two-dimensional coherent structures such as atmospheric blocking events.  相似文献   

7.
Multimode propagation of electromagnetic waves in optical fibre is often described by coupled nonlinear Schrödinger (NLS) equations. To understand the integrability properties of such coupled NLS systems, we extend the Painlevé singularity structure analysis of two coupled systems to three coupled systems and identify four integrable sets of parameters. We bilinearize these cases to obtain soliton solutions. The results are extended to N-coupled systems, completing the earlier analysis of Sahadevan, Tamizhmani and Lakshmanan.  相似文献   

8.
Traveling wave solutions have played a vital role in demonstrating the wave character of nonlinear problems emerging in the field of mathematical sciences and engineering. To depict the nature of propagation of the nonlinear waves in nature, a range of nonlinear evolution equations has been proposed and investigated in the existing literature. In this article, solitary and traveling periodic wave solutions for the (2 + 1)-dimensional modified KdV-KP equation are derived by employing an ansatz method, named the enhanced (G′/G)-expansion method. For this continued equation, abundant solitary wave solutions and nonlinear periodic wave solutions, along with some free parameters, are obtained. We have derived the exact expressions for the solitary waves that arise in the continuum-modified KdV-KP model. We study the significance of parameters numerically that arise in the obtained solutions. These parameters play an important role in the physical structure and propagation directions of the wave that characterizes the wave pattern. We discuss the relation between velocity and parameters and illustrate them graphically. Our numerical analysis suggests that the taller solitons are narrower than shorter waves and can travel faster. In addition, graphical representations of some obtained solutions along with their contour plot and wave train profiles are presented. The speed, as well as the profile of these solitary waves, is highly sensitive to the free parameters. Our results establish that the continuum-modified KdV-KP system supports solitary waves having different shapes and speeds for different values of the parameters.  相似文献   

9.
The discrete nonlinear Schrödinger equations of n sites are studied with periodic boundary conditions. These equations have n branches of standing waves that bifurcate from zero. Travelling waves appear as a symmetry-breaking from the standing waves for different amplitudes. The bifurcation is proved using the global Rabinowitz alternative in subspaces of symmetric functions. Applications to the Schrödinger and Saturable lattices are presented.  相似文献   

10.
Under investigation in this paper is the Boussinesq–Burgers equations, which describe the propagation of shallow water waves. Via the truncated Painlevé analysis and the consistent tanh expansion (CTE) method, some exact interaction solutions among different nonlinear excitations such as multiple resonant soliton solutions, soliton–error function waves, soliton–periodic waves, soliton–rational waves, and soliton–potential Burgers waves are explicitly given.  相似文献   

11.
Exact traveling-wave solutions of time-dependent nonlinear inhomogeneous PDEs, describing several model systems in geophysical fluid dynamics, are found. The reduced nonlinear ODEs are treated as systems of linear algebraic equations in the derivatives. A variety of solutions are found, depending on the rank of the algebraic systems. The geophysical systems include acoustic gravity waves, inertial waves, and Rossby waves. The solutions describe waves which are, in general, either periodic or monoclinic. The present approach is compared with the earlier one due to Grundland (1974) for finding exact solutions of inhomogeneous systems of nonlinear PDEs.  相似文献   

12.
In this article, the generalized unified method (GUM) is used for finding multiwave solutions of the coupled Whitham‐Broer‐Kaup (WBK) equation with variable coefficients. Which describes the propagation of of shallow water waves. Here, we study the effects of the indirect nonlinear interaction of one‐, two‐ and three‐solitonic similaritons on the behavior of propagation of waves, in quasi‐periodic distributed system. This study can unable us to control the dynamics of type soliton (soliton, anti‐soliton) similaritons waves in dispersive waveguides. To give more physical insight to the obtained solutions, they are shown graphically. Their different structures are depicted by taking appropriate arbitrary functions. Further, with the suitable parameters, the indirect nonlinear interaction between two and three‐soliton waves are shown weal, in the sense that their amplitude does not blow up. Moreover, because of the importance of conservation laws Cls and stability analysis SA in the investigation of integrability, internal properties, existence, and uniqueness of a differential equation, we compute the Cls via multiplier technique and stability analysis via the concept of linear stability analysis for the WBK equations using the constant coefficients.  相似文献   

13.
Nonstationary solutions of the Cauchy problem are found for a model equation that includes complicated nonlinearity, dispersion, and dissipation terms and can describe the propagation of nonlinear longitudinal waves in rods. Earlier, within this model, complex behavior of traveling waves has been revealed; it can be regarded as discontinuity structures in solutions of the same equation that ignores dissipation and dispersion. As a result, for standard self-similar problems whose solutions are constructed from a sequence of Riemann waves and shock waves with stationary structure, these solutions become multivalued. The interaction of counterpropagating (or copropagating) nonlinear waves is studied in the case when the corresponding self-similar problems on the collision of discontinuities have a nonunique solution. In addition, situations are considered when the interaction of waves for large times gives rise to asymptotics containing discontinuities with nonstationary periodic oscillating structure.  相似文献   

14.
We apply the group theory to Kadomtsev-Petviashvili-Burgers (KPBII) equation which is a natural model for the propagation of the two-dimensional damped waves. In correspondence with the generators of the symmetry group allowed by the equation, new types of symmetry reductions are performed. Some new exact solutions are obtained, which can be in the form of solitary waves and periodic waves. Specially, our solutions indicate that the equation may have time-dependent nonlinear shears. Such exact explicit solutions and symmetry reductions are important in both applications and the theory of nonlinear science.  相似文献   

15.
We study the propagation of an unusual type of periodic travelling waves in chains of identical beads interacting via Hertz’s contact forces. Each bead periodically undergoes a compression phase followed by free flight, due to special properties of Hertzian interactions (fully nonlinear under compression and vanishing in the absence of contact). We prove the existence of such waves close to binary oscillations, and numerically continue these solutions when their wavelength is increased. In the long wave limit, we observe their convergence towards shock profiles consisting of small compression regions close to solitary waves, alternating with large domains of free flight where bead velocities are small. We give formal arguments to justify this asymptotic behavior, using a matching technique and previous results concerning solitary wave solutions. The numerical finding of such waves implies the existence of compactons, i.e. compactly supported compression waves propagating at a constant velocity, depending on the amplitude and width of the wave. The beads are stationary and separated by equal gaps outside the wave, and each bead reached by the wave is shifted by a finite distance during a finite time interval. Below a critical wave number, we observe fast instabilities of the periodic travelling waves, leading to a disordered regime.  相似文献   

16.
In general, weakly nonlinear high frequency almost periodic wave trains for systems of hyperbolic conservation laws interact and resonate to leading order. In earlier work the first two authors and J. Hunter developed simplified asymptotic equations describing this resonant interaction. In the important special case of compressible fluid flow in one or several space dimensions, these simplified asymptotic equations are essentially two inviscid Burgers equations for the nonlinear sound waves, coupled by convolution with a known kernel given by the sum of the initial vortex strength and the derivative of the initial entropy. Here we develop some of the remarkable new properties of the solutions of this system for resonant acoustics. These new features include substantial almost periodic exchange of energy between the nonlinear sound waves, the existence of smooth periodic wave trains, and the role of such smooth wave patterns in eliminating or suppressing the strong temporal decay of sawtooth profile solutions of the decoupled inviscid Burgers equations. Our approach combines detailed numerical modeling to elucidate the new phenomena together with rigorous analysis to obtain exact solutions as well as other elementary properties of the solutions of this system.  相似文献   

17.
The Kadomtsev–Petviashvili (KP) equation possesses a four‐parameter family of one‐dimensional periodic traveling waves. We study the spectral stability of the waves with small amplitude with respect to two‐dimensional perturbations which are either periodic in the direction of propagation, with the same period as the one‐dimensional traveling wave, or nonperiodic (localized or bounded). We focus on the so‐called KP‐I equation (positive dispersion case), for which we show that these periodic waves are unstable with respect to both types of perturbations. Finally, we briefly discuss the KP‐II equation, for which we show that these periodic waves are spectrally stable with respect to perturbations that are periodic in the direction of propagation, and have long wavelengths in the transverse direction.  相似文献   

18.
An explicit, analytical model is presented of finite-amplitude waves in shallow water. The waves in question have two independent spatial periods, in two independent horizontal directions. Both short-crested and long-crested waves are available from the model. Every wave pattern is an exact solution of the Kadomtsev-Petviashvili equation, and is based on a Riemann theta function of genus 2. These biperiodic waves are direct generalizations of the well-known (simply periodic) cnoidal waves. Just as cnoidal waves are often used as one-dimensional models of “typical” nonlinear, periodic waves in shallow water, these biperiodic waves may be considered to represent “typical” nonlinear, periodic waves in shallow water without the assumption of one-dimensionality.  相似文献   

19.
We investigate two interesting (1+1)-dimensional nonlinear partial differential evolution equations (NLPDEEs), namely the nonlinear dispersion equation with compact structures and the generalized Camassa–Holm (CH) equation describing the propagation of unidirectional shallow water waves on a flat bottom, and arising in the study of a certain non-Newtonian fluid. Using an interesting technique known as the sine-cosine method for investigating travelling wave solutions to NLPDEEs, we construct many new families of wave solutions to the previous NLPDEEs, amongst which the periodic waves, enriching the wide class of solutions to the above equations.  相似文献   

20.
In this paper, based on a multidimensional Riemann theta function, a lucid and straightforward generalization of the Hirota-Riemann method is presented to explicitly construct multiperiodic Riemann theta functions periodic wave solutions for nonlinear equations such as the Caudrey-Dodd-Gibbon-Sawada-Kotera equation and (2+1)-dimensional breaking soliton equation. Among these periodic waves, the one-periodic waves are well-known cnoidal waves, their surface pattern is one-dimensional, and often they are used as one-dimensional models of periodic waves. The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional so that they have two independent spatial periods in two independent horizontal directions. A limiting procedure is presented to analyze in detail, asymptotic behavior of the multiperiodic waves and the relations between the periodic wave solutions and soliton solutions are rigorously established. This generalized Hirota-Riemann method can also be demonstrated on a class variety of nonlinear difference equations such as Toeplitz lattice equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号