首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Splice losses between a photonic crystal fiber (PCF) and a single mode fiber (SMF) or a PCF are numerically investigated by using finite element method (FEM) with the circular perfectly matched layer (PML). Results show that the splice loss between a SMF and a PCF with air holes completely collapsed can reach many times of that between a SMF and a PCF without air-hole collapse. We calculate the rotation losses between two identical PCFs of three kinds: large mode area, polarization maintaining and grapefruit. It is shown that for the large mode area PCF and the grapefruit PCF, the rotation losses are sensitive to the wavelength when the rotation angle is larger than zero degree. The non-circular mode field distribution is the main source of the rotation loss.  相似文献   

2.
The present paper proposes a novel design for achieving single-polarization single-mode (SPSM) operation at 1550 nm in photonic crystal fiber (PCF), using a rectangular-lattice PCF with two lines of three central air holes enlarged. The proposed PCF composed entirely of silica material is modeled by a full-vector finite element method with anisotropic perfectly matched layers. Simulations show that single-polarization operation within broad wavelength range can be easily realized with the proposed structure. The wideband SPSM operation features, the low confinement losses, and the small effective mode area are the main advantages of the proposed PCF structure. A SPSM-PCF with confinement loss less than 0.1 dB/km within wavelength range from 1370 to 1610 nm and effective mode area about 4.7 μm2 at 1550 nm is numerically demonstrated.  相似文献   

3.
刘旭安  吴根柱  陈达如  刘军  卢启景 《光子学报》2014,40(11):1728-1732
设计了一种新型高双折射光子晶体光纤,即其包层引入椭圆形空气孔,且以三角晶格方式周期排列,纤芯引入亚波长尺寸(~0.16 μm)的微型双孔结构阵列.采用全矢量有限元法和各向异性完美匹配层边界条件分析了该型光子晶体光纤的双折射特性和色散特性,详细介绍了该光子晶体光纤在不同的椭圆率、椭圆归一化面积、微型双孔孔径、两小孔之间间距的情况下双折射和限制损耗随波长的变化曲线.模拟结果表明,通过同时在包层和纤芯引入非对称性,获得了较高的双折射(~10-3量级)和极低(~10-4 dB/km)的限制损耗.提供了一种新的光子晶体光纤设计方法,即通过同时在包层和纤芯引入新结构来同时获得高双折射和低损耗.  相似文献   

4.
A novel photonic crystal fibre (PCF) with a low confinement loss and nearly zero ultra-flatted chromatic dispersion and negative chromatic dispersion at a wide telecommunication window is presented. Important PCF design parameters, such as the effects of air holes and geometrical parameters on the effective index, confinement losses, chromatic dispersion and effective mode area, have been thoroughly investigated by employing the full vectorial finite element method. Significant reduction of the confinement loss and low chromatic dispersion of the PCF, with three rings of air holes, has been obtained by carefully incorporating additional air holes.  相似文献   

5.
We report a novel design of photonic crystal fiber (PCF) with a rectangular array of four closely-spaced, highly elliptical air holes in the core region and a circular-air-hole cladding. The proposed PCF is able to support ultra-wideband single-polarization single-mode (SPSM) transmission from the visible band to the near infrared band. With the aid of the inner cladding formed by the central air holes, one polarization of the fundamental mode can be cut off at very short wavelengths and ultra-wideband SPSM propagation can be achieved. The inner cladding also suppresses the higher order modes and allows large air filling fraction in the outer cladding while the proposed fiber remains SPSM, which significantly reduces the mode effective area and the confinement loss. Our simulation results indicate that the proposed PCF has a 1540 nm SMSP range with <0.25 dB/km confinement loss and an effective area of 2.2 μm2. Moreover, the group velocity dispersion (GVD) of the proposed PCF can also be tuned to be flat and near zero at the near infrared band (∼800 nm) by optimizing the outer cladding structure, potentially enabling many nonlinear applications.  相似文献   

6.
椭圆孔光子晶体光纤的本地正交函数模型   总被引:5,自引:1,他引:4       下载免费PDF全文
提出了一种用于分析椭圆孔光子晶体光纤的正交函数模型.发展了一种新型超格子的构造方法,将光子晶体光纤的横向介电常数表示为两种周期性结构叠加,这两种周期性结构分别用余弦函数展开;同时将横向电场以Hermite-Gaussian函数展开.利用正交函数的性质,将全矢量波动方程转化为矩阵本征值问题,求得两偏振模式传输常数.利用此模型可以研究圆孔及椭圆孔光子晶体光纤的模式特性、色散特性、偏振特性等. 关键词: 光子晶体光纤 超格子 正交函数 本征值问题  相似文献   

7.
谢丹  张惠敏  熊磊 《光学技术》2017,43(2):166-168
设计了一种基于四孔单元的光子晶体光纤,它可以满足光通信系统中高双折射率、负色散和低限制损耗的要求,比起通常的三角结构光纤有着更高的双折射率,并且结构制作也较简单。采用全矢量有限元法和各项异性完美匹配层法对所设计的光纤进行了仿真研究。仿真结果表明:该光纤在1.55μm波长处可获得10~(-2)数量级的双折射率,在较宽广的波段范围具有大的负色散,限制损耗低于10~(-9)dB/m;该光纤在保偏光纤、单极化单模光纤、色散补偿光纤等方面具有重要的应用。  相似文献   

8.
In this paper, triangular lattice index-guiding photonic crystal fibres (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fibre (SMF-28) for an 80 km optical link operating at 1.55 μm, by using a directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions, compensation ratios and confinement losses.  相似文献   

9.
The 1-hole-missing and 7-hole-missing photonic crystal fibers (PCFs) with flattened fundamental modes (FMs) are proposed by introducing a layer of up-doped silica into the core of the PCFs. The transverse mode competitions are compared between the 7-hole-missing PCF lasers with and without flattened-FMs. The numerical results show that the flattened-FM PCF lasers can support the single transverse mode operation, even for a large value of the ratio of air hole diameter to the spacing between holes (up to 0.53).  相似文献   

10.
光子晶体光纤接续损耗的理论分析   总被引:5,自引:0,他引:5  
基于超格子构造法,采用全矢量模型计算了光子晶体光纤的模场半径,由此出发理论分析了光子晶体光纤与普通单模光纤之间接续损耗分别受横向偏移、轴向倾斜以及模场不匹配的影响,给出了光子晶体光纤在部分常用结构参量区域{Λ,d/Λ}内与SMF-28接续损耗的理论值,讨论了光子晶体光纤各结构参量与接续损耗之间的关系。并简要分析了不同结构光子晶体光纤之间的接续损耗。结果表明,接续损耗对横向偏移和轴向倾斜都非常敏感;孔距是决定接续损耗大小最主要的因素;与普通单模光纤接续,当光子晶体光纤的孔距比该单模光纤纤芯半径大一些时,接续损耗比较小;两种不同结构光子晶体光纤之间的接续损耗大小最主要取决于它们孔距的差异。  相似文献   

11.
A photonic crystal fiber (PCF) is proposed that, through novel design, achieves an enhanced effective mode area. The PCF is composed of two concentric elliptical cores. The central core is un-doped silicon whilst the second, outer core region, is doped. The outer doped region is also bordered by lightly doped half ellipse segments. The effective mode area of the structure was calculated and compared with the mode area of conventional PCF's. Our results show that the mode area and chromatic dispersion are very sensitive to the geometry, dimensions and placement of the lightly doped segments. The chromatic dispersion, bend losses and the nonlinear coefficient are also numerically simulated and presented in this paper.  相似文献   

12.
Yue Y  Zhang L  Yan Y  Ahmed N  Yang JY  Huang H  Ren Y  Dolinar S  Tur M  Willner AE 《Optics letters》2012,37(11):1889-1891
We propose As(2)S(3) ring photonic crystal fiber (PCF) for supercontinuum generation of optical vortex modes. Due to the large material index contrast between As(2)S(3) and air holes in the designed ring PCF, there is a two-orders-of-magnitude improvement of the difference between the effective refractive indices of different vortex modes compared with regular ring fiber. The design freedom of PCFs enables a low dispersion (<60 ps/nm/km variation in total) over a 522 nm optical bandwidth. Moreover, the vortex mode has a large nonlinear coefficient of 11.7/W/m at 1550 nm with a small confinement loss of <0.03 dB/m up to 2000 nm. An octave-spanning supercontinuum spectrum of the vortex mode is generated from 1196 to 2418 nm at -20 dB by launching a 120 fs pulse with a 60 W peak power at 1710 nm into a 1 cm long As(2)S(3) ring PCF.  相似文献   

13.
A novel photonic crystal fiber (PCF) based on a four-hole unit is proposed in order to meet the requirements of high birefringence, negative dispersion and confinement loss in fiber-optic communication. The proposed design has been simulated based on the full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Analysis results show that the proposed PCF can achieve a high birefringence to the order of 10−2 at the wavelength of 1.55 μm, a large negative dispersion over a wide wavelength range and confinement losses lower than 10−9 dB/m simultaneously, which has important applications in polarization-maintaining (PM) fibers, single-polarization single-mode (SPSM) fibers, dispersion compensation fibers and so on.  相似文献   

14.
Highly birefringent elliptical-hole photonic crystal fibers (PCFs) with single defect and double defects are proposed, which are supposed to be achieved by extruding normal circular-hole PCFs based on a triangular-lattice photonic crystal structure. Comparative research on the birefringence and the confinement loss of the proposed PCFs with single defect and double defects is presented. Simulation results show that the proposed PCFs with single defect and double defects can be with high birefringence (even up to the order of 10^-2). The confinement loss increases when the ellipticity of the air hole of the PCFs increases, which nevertheless can be overcome bv increasing the ring number or the air holes in the fiber cladding.  相似文献   

15.
郭艳艳  侯蓝田 《物理学报》2010,59(6):4036-4041
提出一种新型的全固态八边形大模场低损耗的掺镱石英光子晶体光纤,利用多极法对光纤的结构和特性进行了模拟.这种结构的光子晶体光纤空气孔由掺有少量氧化硼的石英棒代替,简化了制备过程,提高了光纤的热损伤阈值.在波长为1064 μm处,光纤的模场面积可达2000 μm2,还可实现单模传输,而且其弯曲损耗很小,当弯曲半径为5 cm时弯曲损耗小于05 dB/m.这种光纤对光纤激光器和光纤放大器的发展有重要意义. 关键词: 光子晶体光纤 模场面积 弯曲损耗 限制损耗  相似文献   

16.
A new nonlinear dispersion flattened photonic crystal fiber with low confinement loss is proposed. This fiber has threefold symmetry core. The doped region in the core and the big air-holes in the 1st ring can make high nonlinearity in the PCF. And the small air-holes in the 1st ring and the radial increasing diameters air-holes rings in cladding can be used to achieve the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCFs structure parameters. A PCF with flattened dispersion is obtained. The dispersion is less than 0.8 ps/(nm km) and is larger than −0.7 ps/(nm km) from 1.515 μm to 1.622 μm. The nonlinear coefficient is about 12.6456 W−1 km−1, the fundamental mode area is about 10.2579 μm2. The confinement loss is 0.30641 dB/km. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal fibers with high nonlinearities.  相似文献   

17.
Xiao L  Jin W  Demokan MS 《Optics letters》2007,32(2):115-117
We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.  相似文献   

18.
In this paper we present the design of a modified hexagonal photonic crystal fiber (PCF) having high birefringence and a near-zero flattened dispersion. Using the finite-difference method (FDM), it is shown that the proposed multiple Gedoped core hexagonal PCF exhibits a high birefringence of order 10−3 and a nearly zero flattened dispersion in the optical coherence tomography (OCT) waveband. In addition, the proposed PCF has a confinement loss of less than 10−8 dB/m at 1.06 μm. PCFs with such properties are considered suitable for both endoscopic OCT and other experimental setups employing 1.06 μm lasers.  相似文献   

19.
Kong GJ  Kim J  Choi HY  Im JE  Park BH  Paek UC  Lee BH 《Optics letters》2006,31(7):894-896
A lensed photonic crystal fiber (PCF) is proposed as an effective element for an optical free-space interconnector. By simultaneously forming a beam-expansion region and a focusing lens on a single piece of PCF, effective coupling between PCFs could be achieved. A long working distance of up to 1 mm with wide longitudinal and lateral tolerances was measured. The optical characteristics of the lensed PCFs and the connectors made from them are analyzed experimentally and theoretically.  相似文献   

20.
We demonstrate dynamic control of the effective area (A eff) of photonic crystal fibers (PCFs) in the range of 18.1–8.22 μm2 and the mode field diameter in the range of 4.78–3.42 μm. This control was realized by altering their structural properties and varying the germanium (Ge) doping rate, which changed the refractive index difference (Δn Ge) between 1.0 and 3.0% relative to the refractive index of the silica cladding. This was achieved by adjusting the Ge doping rate in the core and changing the radius (d core) of the doped region, i.e., by changing the equivalent refractive index, using numerical calculations. Numerical results were verified by comparison with experimental results for a fabricated Gedoped PCF obtained by far-field scanning based on the ITU-T Petermann II definition. The proposed approach will simultaneously decrease Aeff and achieves high light confinement and high nonlinearity in PCFs. It enables architectonics/controllability of highly nonlinear PCFs with passive optical devices in photonic networks and life science applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号