首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

2.
A new kind of self-assembled monolayer (SAM) formed in aqueous solution through the pre-formed inclusion complexes (abbreviated CD · Cn) between α, β-cyclodextrins (CDs) and alkanethiols (CH3(CH2)n−1)SH, n = 10, 14 and 18) was prepared successfully on gold electrodes. High-resolution 1H NMR was used to confirm the formation of CD · Cn. X-ray photoelectron spectroscopy, cyclic voltammetry and chronoamperometry were used to characterize the resulting SAMs (denoted as MCD·Cn). It was found that MCD·Cn were more stable against repeated potential cycling in 0.5 M H2SO4 than SAMs of CH3(CH2)n−1SH (denoted as MCn), with a relative sequence of Mβ−CD·Cn > Mα−CD·Cn > MCn. In addition, an order of blocking the electron transfer between gold electrodes and redox couples (both Fe(CN)36 and Ru(NH3)346) in solution, MCD·C10 > MCD·C14 > MCD·C18, was observed. A plausible explanation is provided to elucidate some of the observations.  相似文献   

3.
Layered crystalline zirconium phenylphosphonate, Zr(O3PC6H5)2, changed its interlamellar distance of 1481 pm after intercalation of n-alkylmonoamines, CH3---(CH2)n---NH2 (n=0–6). The infrared spectra of the precursor host and the corresponding intercalated compounds presented vibrations associated with PO3 groups in the 1163–1039 cm−1 range and additional bands related to C---H stretching bands in the 2950–2850 cm−1 interval were observed after amine insertion. The thermogravimetric curves showed a mass loss assigned to the phenyl group; however, the amine intercalated fraction was not quantitatively determined. A peak in the 31P NMR spectrum centered at −6 ppm for the host was observed. The surface area was 42.0±0.2 m2 g−1 and the scanning electron micrograph gave images consistent with lamellar structural features. The layered compound was calorimetrically titrated with amine in ethanol, requiring three independent operations: (i) titration of matrix with amine, (ii) matrix salvation, and (iii) dilution of the amine solution. From those thermal effects the variation in enthalpy was calculated as: −41±1.00,−33.28±0.50,−34.40±0.80,−10.40±0.40,−12.40±0.42,−16.10±0.08 and −7.0±0.04 kJ mol−1, for n=0–6, respectively. The exothermic enthalpic values reflected a favorable energetic process of amine–host intercalation in ethanol. The negative Gibbs free energy results supported the spontaneity of all these intercalation reactions. The positive favorable entropic values, as carbon chain size increased, are in agreement with the free solvent molecules in the medium, as the amines are progressively bonded to the crystalline lamellar inorganic matrix at the solid/liquid interface.  相似文献   

4.
Nanosecond laser flash photolysis technique is used to study the formation and decay kinetics of covalently linked triplet radical pairs (RP) formed after photoinduced electron transfer in the series of 21 zinc porphyrin—chain—viologen (Pph—Spn—Vi2+) dyads, where the number of atoms (n) in the chain increases from 2 to 138. In poorly viscous polar solvents (acetone, CHCl3—CH3OH (1 : 1) mixture), the dependence of the rate constant of RP formation on n can be described by the equation k e = k e 0 n –a at k e 0 = 2.95·108 s–1 anda = 0.8. In the zero magnetic field, the RP recombination rate constant (k r(B = 0)) is significantly lower than k e and ranges from 0.7·106 to 8·106 s–1. The dependence of k r(B = 0) on n is extreme. The dependence k r(B = 0) reaches a maximum at n = 20. In the strong magnetic field (B = 0.21 T), the significant retardation of triplet RP recombination is observed. The chain length has an insignificant effect on k r(B = 0.21 T), which ranges from 0.3·106 to 0.9·106 s–1. The regularities found are discussed in terms of the interplay of molecular and spin dynamics.  相似文献   

5.
The micellization behavior of bis cationic gemini surfactant, N,N′-dihexadecyl-N,N,N′,N′-tetramethyl-1,12-dodecanediammonium dibromide [C16H33N+(CH3)2-(CH2)12-N+(CH3)2C16H33, 2Br] has been studied in binary aqueous mixtures of dimethyl sulfoxide, methanol, 1,4-dioxane, glycerol and ethylene glycol by conductivity and surface tension measurements at 300 K. The critical micellar concentration, degree of micelle ionization (α), surface excess concentration (Гmax), minimum surface area per molecule of surfactant (Amin), Gibbs free energy of micellization (ΔGm°), the surface pressure at cmc (πcmc), and the Gibbs energy of adsorption (ΔGad°) of the gemini surfactant have also been determined. The cmc, α, Amin increases where as (ΔGm°), Гmax, and πcmc decreases with increasing volume percentage of the solvents in the solvent–water binary mixture. The interfacial properties of the gemini surfactant, solute–solute, solvent–solute interactions and the effectiveness of a surface-active molecule in binary solvent systems have been discussed.  相似文献   

6.
Degradation of polyoxyethylene chain of non-ionic surfactant (TritonX-100) by chromium(VI) has been studied spectrophotometrically under different experimental conditions. The reaction rate bears a first-order dependence on the [Cr(VI)] under pseudo-first-order conditions, [TritonX-100]  [Cr(VI)] in presence of 1.16 mol dm−3 perchloric acid. The observed rate constant (kobs) was 3.3 × 10−4 to 3.5 × 10−4 s−1 and the half-life (t1/2) was 33–35 min for chromium(VI). The effects of total [TritonX-100] and [H+] on the reaction rate were determined. Reducing nature of non-ionic TritonX-100 surfactant is found to be due to the presence of –OH group in the polyoxyethylene chain. It was observed that monomeric and non-ionic micelles of TritonX-100 were oxidized by chromium(VI). When [TritonX-100] was less than its critical micelle concentration (cmc) the kobs values increased from 0.76 × 10−4 to 1.5 × 10−4 s−1. As the [TritonX-100] was greater than the cmc, the kobs values increases from 2.1 × 10−4 to 8.2 × 10−4 s−1 in presence of constant [HClO4] (1.16 mol dm−3) at 40 °C. A comparison was made of the oxidative degradation rates of TritonX-100 with different metal ion oxidants. The order of the effectiveness of different oxidants was as follows: permanganate > diperiodatoargentate(III) > chromium(VI) > cerium(IV).  相似文献   

7.
The ac admittance spectra of a smooth tungsten carbide (WC) electrode in a stirred H2-saturated 0.5 M H2SO4 solution were measured at hydrogen overpotentials from −0.15 to +0.25 V in the frequency range from 0.1 to 900 Hz, at a temperature of 80°C.An extended analysis of immitance spectra in diagrams of various coordinates led to an interpretation of the system under study at any potential in terms of a linear model which took into account the constant phase element behaviour of the electrode double layer and the presence of two parallel, activation-controlled faradaic processes: the hydrogen ionization/evolution process and an additional electrochemical adsorption reaction passivating the electrode surface for the hydrogen process.Computerized fitting of a rational equivalent circuit to the immitance spectra for all the potentials gave the dependences of the equivalent circuit elements on the potential. The fits proved that the mechanism of the faradaic processes taking place on the electrode is probably the same in the entire range of potentials.  相似文献   

8.
The α-tocopheroxyl radical was generated voltammetrically by one-electron oxidation of the α-tocopherol anion (r1/2=−0.73 V versus Ag|Ag+) that was prepared by reacting α-tocopherol with Et4NOH in acetonitrile (with Bu4NPF6 as the supporting electrolyte). Cyclic voltammograms recorded at variable scan rates (0.05–10 V s−1), temperatures (−20 to 20°C) and concentrations (0.5–10 mM) were modelled using digital simulation techniques to determine the rate of bimolecular self-reaction of α-tocopheroxyl radicals. The k values were calculated to be 3×103 l mol−1 s−1 at 20°C, 2×103 l mol−1 s−1 at 0°C and 1.2×103 l mol−1 s−1 at −20°C. In situ electrochemical-EPR experiments performed at a channel electrode confirmed the existence of the α-tocopheroxyl radical.  相似文献   

9.
The homogeneous gas-phase decomposition kinetics of methylsilane and methylsilane-d3 have been investigated by the comparative-rate-single-pulse shock-tube technique at total pressures of 4700 torr in the 1125–1250 K temperature range. Three primary processes occur: CH3SiH3 → CH3SiH + H2 (1), CH3SiH3 → CH4 + SiH2 (2), and CH3SiH3 → CH2 = SiH2 + H2 (3). The high-pressure rate constants for the primary processes in CH3SiH3 obtained by RRKM calculations are log (k1 + k3) (s?1) = 15.2 - 64,780 Cal/θ and log k2 (s?) = 14.50 - 67,600 → 2800 Cal/θ. For CH3SiD3 these same rate constants are log k1 (s?) = 14.99 - 64,700 cal/θ log k2 (s?) = 14.68 – 66,700 → 2000 cal/θ, and log k3 (s?) = 14.3 ? 64,700 cal/θ.  相似文献   

10.
(4S)-4′-diisopropyl-2,2′-bithiazoline (DPT) is an electroactive organic chiral compound giving two reduction responses in square-wave voltammograms at potentials about −0.2 and −0.4 V by forming a complex with mercury which deposits at the electrode surface. By the addition of copper(II) ion to the solution of DPT a third peak appears between them at about −0.3 V, which corresponds to the reduction of adsorbed Cu-DPT complex. Optimal pH for the investigation of those redox processes was found to be 2.8. By square-wave voltammetric measurements it was interpreted that these redox reactions were quasireversible with immobilized reactants. By plotting ip/f vs. frequency a quasireversible maximum was obtained, and the apparent standard reaction rate constants were calculated: log (ks)DPT=(0.91 ± 0.9) and 1 < ks < 65S−1, log (ks)CuDPT= (0.35 ± 0.9) and 0.3 < ks < 18 S−1 in 0.55 M NaCl.  相似文献   

11.
Polymerization of isobutylene in hexane at –78 °C under the action of the complex AcBr · 2AlBr3 (Ac-2) affords polyisobutylene having C=O groups at the head and C-Br or C=C groups at the tail of all the molecules. The presence of the latter indicates that there occurs proton elimination from the growing carbocation with the formation of a superacid HBr · 2AlBr3 which is unable to initiate the polymerization repeatedly under given contitions. This makes it possible to consider proton elimination as the reaction of the decay of active centers with the rate constantk d. This value has been calculated from the rate of accumulation of the polymeric molecules having terminal C=C bonds:k d=3.5 · 10–4 s–1. The rate constant of chain growthk g has been determined from polymerization kinetics and from the content of active centers:k g=6.2 L mol–1 s–1.For part 3, see ref. 4.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 883–886, May, 1993.  相似文献   

12.
The sitting-atop complexation of meso-tetraarylporphyrins and its para-substituted derivatives (H2t(4-X)pp, X:H, Br, Cl, CH(CH3)2, OCH3, CH3), as electron donors, with zirconyl, as an electron acceptor, have been investigated spectrophotometrically in chloroform. The mole ratio studies based on physicochemical techniques were employed clearly and revealed the formation of 1:1 sitting-atop complexes which was confirmed by UV–vis, 1H NMR and IR spectroscopic data. The value of the formation constant was estimated for each complex using a nonlinear optimization of the complex absorbance vs. mole ratio data by package KINFIT. The results showed that the stability of these complexes decreases with the temperature enhancement. Thermodynamic parameters, ΔG°, ΔH° and ΔS°, of the SAT complexes have been determined from the temperature dependence of formation constants by Van’t Hoff equation. Also, the influence of the substituents of the aryl rings in H2t(4-X)pp on the stability of the SAT complexes is discussed.  相似文献   

13.
The microstructure of the normal micelles formed by dimeric surfactants with long spacers, [Br(CH3)2N+(C m H2 m +1)-(CH2) S  -(C m H2 m +1)N+(CH3)2Br, m = 10 and s = 8, 10 and 12], has been investigated by small-angle neutron scattering and compared with previously reported results for micelles of the same dimeric surfactants with shorter spacers (m = 10 and s = 2, 3, 4 and 6). It was found that for dimeric surfactants with long spacers (s = 8 and 10), both micellar growth and variation in shape occur to only a small extent, if at all, compared with dimeric surfactants with short spacers. However, for the dimeric surfactant with the longest spacer, s = 12, the extent of micellar growth and shape variation is also large. These results are due to the differences in conformation of dimeric surfactants with short spacers (s = 2–6) compared with that of the surfactants with long spacers (s = 8–12). Received: 15 June 1998 Accepted: 22 July 1998  相似文献   

14.
Standard charge transfer rate constants (k s) were defined for Nb(V)/Nb(IV) redox couples in NaF-KF (eutectic)-K2NbF7, KF-K2NbF7, and CsF-K2NbF7 melts using the cyclic voltammetry technique. It was established that in fluoride melts, the k s values change in the following order depending on the composition of the second coordination sphere: k s (CsF) < k s (KF) < k s (NaF-KF).  相似文献   

15.
A new couloamperometric apparatus has been designed to extend the range of this kinetic technique to the measurement of very high rate constants, 108M?1s?1, by using TFCR-EXSEL conditions (TFCR—very low reactant concentration; EXSEL—salt excess), which give half-lives of a few seconds for very fast second-order reactions. Very low faradaic currents, in the nanoampere range for halogens, corresponding to very low reactant concentrations of 10?8–10?9M, are measured selectively by compensating the eddy currents, principally the residual and the induced currents. When the electroactive species is bromine, the concentration is demonstrated to be linearly related to the limiting reduction current in the very low concentration range. The upper limit of this technique for bromination is at present 3 × 108M?1s?1. The method is applied to the kinetic study of highly reactive enol ethers EtO-C(R) = CH-R′, where R and R′ are H or Me. A value of 2.2 × 108M?1s?1 is obtained for k, the rate constant for free bromine addition to EtO-CH = CH2, by extrapolating the kinetic bromide ion effects to [Br?] = 0. An α-methyl effect (kα-Me/kH)EtO of 15 is found; this is a small decrease in the methyl effect compared to the marked increase in the double bond reactivity. For the enol acetate MeCOO-CH = CH2, whose rate constant is 6 × 102M?1s?1, (kα-Me/kH)OCOMe is 21. The dependence of substituent effects on reactivity is discussed in terms of the Hammond effect on the transition state position and of charge delocalization by group G of olefins G-CH = CH2.  相似文献   

16.
A temperature study was performed on micelle formation of a series of homologous cationic surfactants having organic counterions (alkanesulfonates) with carbon numbers ranging from 1 to 4: dodecylammonium salts of methanesulfonate (DAMS), ethanesulfonate (DAES), propanesulfonate (DAPS), and butanesulfonate (DABS) in water. The critical micelle concentrations (CMCs) and the degree of counterion binding (β) were determined at different temperatures ranging from 5 to 50°C by means of conventional electric conductance measurements. From the temperature dependence of β as well as CMC, Gibbs energy ΔG0m, enthalpy ΔH0m, and entropy ΔS0m, on micelle formation, were estimated for the respective surfactants. As for the temperature dependence of CMC for these surfactants, the temperature-CMC curves have a minimum around 30°C and show that the CMC at each temperature is lowered by about 3 mmol dm-3 per methylene group in the alkyl chain of the counterions. The relationship between β and temperature suggested that the counterion of MS- behaves most similarly to common univalent ions such as halide ions. In contrast, PS- and BS-, having a stronger ability to lower CMC and to promote association of surfactant ions with counterions as well as of surfactant ions themselves, behave more like those of surfactant ions, and ES- shows the most complicated character between those of common univalent ions and organic ions. However, the temperature dependence of enthalpy change, ΔH0m demonstrates that these four surfactants are divided into two groups: (1) DAMS and DAES and (2) DAPS and DABS. In addition, the entropy change ΔS0m as a function of alkyl chain length gives evidence that the contribution of the entropy term to the Gibbs energy on micelle formation clearly separates between DAES (m = 2) and DAPS (m = 3). A similar discontinuity is found even in the plot of ΔG0m versus carbon atom number of alkyl chain, m, and in the plot of ΔG0m versus estimated hydrodynamic radius of counterions. All the results obtained have indicated that lengthening the alkyl chains initially hinders micelle formation, but the longer chains are markedly effective in lowering the CMC and probably in increasing the aggregation number, owing to enhanced hydrophobic interaction between counterion and the micellar surface and/or core.  相似文献   

17.
29Si NMR peaks due to species with the double four-membered ring siloxane backbone composed of both Si(O)4/2 and CH3Si(O)3/2 units, (CH3) n Si8O 20 – n /(8 – n) – (n=1–3), formed by co-hydrolysis of tetraethoxysilane and methyltriethoxysilane in the presence of tetramethylammonium ions in methanol have been assigned. It has been found that 29Si NMR peaks due to Si(OSi)3(O) units shift to lower frequencies by replacement of the adjacent Si(O)4/2 units by CH3Si(O)3/2 units, in other words, with increasing m value in Si[OSi(O)3]3 – m [OSi(CH3) (O)2] m (O) (m=0–2). Peaks from CH3 Si(OSi)3 units in the species have also appeared as separated due to the kind of neighbor structural units. On the basis of the assignments, positions of CH3Si(O)3/2 units in the cubic octameric siloxane framework of (CH3) n Si8O 20 – n /(8 – n) – (n=2, 3), for both of which three isomers are present, have been estimated.  相似文献   

18.
The kinetics of the decomposition of acetyl-cyclo-hexylsulfonylperoxide (SP, RS(O2)OOC(O)CH3, R = cyclo-C6H11) was studied in a C6H4Cl2 solution in an O2 atmosphere at 323–353 K and in an Ar atmosphere at 323–343 K. The rate constants of SP monomolecular decomposition (k 1) and SP reaction with CH3 · radicals (k 3) were determined. The temperature dependences of these rate constants are described by equations log k 1 = (14.5 ± 2.9) – (115.4 ± 19.0) – (2.3RT) and log k 3= (11.6 ± 2.2) – (44.6 ± 14.2)/(2.3RT), where the activation energies are expressed in kJ/mol.  相似文献   

19.
The heterogeneous electron transfer rate constant (k s) of dimethylferrocene (DMFc) was estimated using cyclic voltammetric peak potential separations taken typically in a mixed diffusion geometry regime in a polyelectrolyte, and the diffusion coefficient (D) of DMFc was obtained using a steady-state voltammogram. The heterogeneous electron transfer rate constant and diffusion coefficient are both smaller by about 100-fold in the polymeric solvent than in the monomeric solvent. The results are in agreement with the difference of longitudinal dielectric relaxation time (τL) in the two kinds of solvents, poly(ethylene glycol) (PEG) and CH3CN, indicating that k s varies inversely with τL; k s is proportional to D of DMFc. Both D and k s of DMFc in PEG containing different supporting electrolytes and at different temperatures have been estimated. These results show that D and k s of DMFc increase with increasing temperature in the polyelectrolyte, whereas they vary only slightly with changing the supporting electrolyte. Received: 5 February 1998 / Accepted: 23 July 1998  相似文献   

20.
The radical pair dynamics in a photochemical hydrogen abstraction reaction of 2-methyl-1,4-naphthoquinone in a sodium dodecylsulfate micelle was modulated by a microwave pulse. After a short resonant 180° microwave pulse, the recombination of the radical pair was enhanced, its rate constant being determined to be (8.3±0.8)×106 s−1. Other kinetic parameters were determined by the scanning of the microwave pulse position as follows: the formation of the radical pair (3.3±0.3)×107 s−1, the relaxation rate from the triplet (T±1) levels to the singlet–triplet (T0) mixed one (3.3±0.3)×105 s−1 at 331 mT, and the radical escape rate (5.8±0.6)×105 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号