首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
左敏  郑强 《高分子科学》2013,31(11):1470-1483
The effect of clay on the morphology and phase-separation behavior of poly(methyl methacrylate)/poly(styreneco-acrylonitrile)(PMMA/SAN) blends and the variation of clay dispersion have been investigated. With the evolution of phase separation in PMMA/SAN, most of the clays are first located at the boundaries between PMMA and SAN, and then gradually move to the PMMA-rich domain, owing to the affinity of clay to PMMA. The introduction of clay causes the increase of binodal and spinodal temperatures of PMMA/SAN and enlarges their metastable region, indicating the phase stabilizing effect of clay on the matrix. But the influence of clay on the cloud points obviously depends on the composition of PMMA/SAN. The selective adsorption of PMMA on the clay results in the difference between the composition of surface layer and that of polymer matrix. Hence, the clay plays the role of an agent changing the conditions of phase structure formation.  相似文献   

2.
Based on the premise that the addition of glass beads (GB) could hardly influence the linear viscoelasticity in low frequency (ω) region for homogeneous polymer systems, the dynamic rheological behaviors of unfilled and filled poly(methyl methyacrylate) (PMMA)/poly(styrene-co-acrylonitrile) (SAN) blends were studied in order to explore the effect of GB on the phase-separation of binary polymer matrix. Results show that GB has an induced effect on the phase-separation, which embodies that the phase-separation temperature (Ts) of PMMA/SAN blend filled with GB is lower than that of the unfilled system. The higher content of GB, the higher is the "secondary plateau" of ω in the terminal region of storage modulus (G') versus ω plot. The "secondary plateau" appearing in the terminal region is attributed to the phase-separation of PMMA/SAN blends and it becomes more fiat for filled polymer blends under the same conditions. However, it is suggested that this kind of "induced effect" is related to the GB content; the higher content of GB particles might enhance the interaction between the particles and polymer matrix. Moreover, it is found that the addition of GB also has an influence more or less on the morphology and domain size of polymer matrix. It is believed that the plot of dynamic viscosity (η') versus the loss viscosity (η") is sensitive to examine the effect induced by GB on the phase-separation of binary polymer matrix.  相似文献   

3.
By preparing homogenous blend samples with different degrees of chain entanglement, we report an anomalous contribution of chain entanglement to phase separation temperature and rate of poly(methyl methacrylate)/poly(styrene-comaleic anhydride)(PMMA/SMA) blends presenting a typical lower critical solution temperature(LCST) behavior. The meltmixed PMMA/SMA blends with a higher chain entanglement density present a lower cloud point(Tc) and shorter delay time, but lower phase separation rate at the given temperature than solution-cast ones, suggesting that for the polymer blends with different condensed state structure, thermodynamically more facilitation to phase separation(lower Tc) is not necessarily equivalent to faster kinetics(decomposition rate). The experimental results indicate that the lower Tc of melt-mixed sample is ascribed to smaller concentration fluctuation wavelength(Λm) induced by higher entanglement degree, while higher entanglement degree in melt-mixed sample leads to a confined segmental dynamics and consequently a slower kinetics(decomposition rate) dominated by macromolecular diffusion at a comparable quench depth. These results reveal that the chain packing in polymer blends can remarkably influence the liquid-liquid phase separation behavior, which is a significant difference from decomposition of small molecular mixtures.  相似文献   

4.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

5.
Compatibility of poly (vinyl acetate) (PVAc) with poly (methyl methacrylate) (PMMA) mixtures has been studied by using nuclear magnetic relaxation, differential scanning calorimeter and small-angle X-ray scattering techniques. The nuclear magnetic relaxation time T_1's were measured as a function of composition in blends of PMMA and PVAc prepared from chloroform solution. The results show that the system is miscible for casting from chloroform solution.  相似文献   

6.
Melt blends of poly(ethylene oxide) (PEO) and poly(vinyl acetate (PVAc) were prepared andstudied by Torsional Pendulum Analysis (TPA) and Fourier Transform Infrared (FTIR). Two glasstransitions were found in these blends. The lower T_g corresponds to the segmental motion in thepure PEO. The dependence of the position and broadness of the higher T_g on composition of theblends indicates that the two components are compatible in the amorphous phase with micro-hetero-geneity. These T_g values observed from mixed PVAc/PEO phase are much higher than that calculatedfrom Fox equation. The comparison of the blends quenched and annealed from melt implies thatPVAc mixed with PEO at the segmental level on molten state and the deviation of T_g values fromFox equation could be due to variation of the blend's composition by crystallization of part of thePEO component. Further indication that the blends are compatible down to the level of chain segments and thatthere are specific interactions between PVAc and PEO molecules comes from the analysis of FTIRspectra of the blends and the solution of PVA in diethylene glycol dimethyl ether.  相似文献   

7.
TOUGHENING OF POLYCARBONATE WITH PBA-PMMA CORE-SHELL PARTICLES   总被引:1,自引:0,他引:1  
The miscibility, mechanical properties, morphology and toughening mechanism of PC/PBA-PMMA blends were investigated. The dynamic mechanical results show that PC/PBA-PMMA blend has good miscibility and strong interfacial adhesion. The Izod impact strength of blend PC/PBA-PMMA with 4% (volume fraction) PBA-PMMA core-shell modifier is 16 times higher than that of pure PC. The core-shell volume fraction and thickness of the PMMA shell have effect on the toughness of PC/PBA-PMMA blends. As PMMA volume fraction increases, the toughness of PC/PBA-PMMA blend increases, and reaches a maximum value at 30% volume fraction of PMMA or so. The tensile properties of PC/PBA-PMMA blend with a minimum amount of PBA-PMMA modifier show that brittle-tough transition has no significant variance in comparison with that of pure PC. The scanning electron microscopic (SEM) observation indicates that the toughening mechanism of the blend with the pseudo-ductile matrix modified by small core-shell latex polymer particles is the synergetic effect of cavitation and shear yielding of the matrix.  相似文献   

8.
The crystalline structures, morphologies, and mechanical properties of poly(vinylidene fluoride)/clay nanocomposites were studied using X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), polarized optical microscopy(POM), and tensile tests. The results of XRD and TEM show that organoclays are dispersed in the poly(vinylidene fluoride)(PVDF) matrix. A clay-induced crystal transformation from α-phase to β-phase of PVFD was confirmed by XRD and FTIR. Clay layers restricted the growth of spherulite. The tensile tests indicate that the tensile modulus and yield strength as well as the elongation at break decrease when clay is loaded.  相似文献   

9.
Polyamide 1010(PA1010)/thermoplastic poly(ether urethane) elastomer(ether-based TPU) blends were prepared via melt extrusion. The crystallization kinetics and melting behavior of PA1010/ether-based TPU blends were systematically investigated using differential scanning calorimetry. The crystallization kinetics results show that the addition of ether-based TPU hinders the crystallization of PA1010, and the hindrance effect increases with the increase of the concentration of ether-based TPU. Both pure PA1010 and PA1010/ether-based TPU blends exhibit double melting peaks in the process of nonisothermal crystallization. The double melting peaks change differently with the variation of cooling rate and blend composition. The cooling rate only influences the lower melting peak; however, the blend composition influences not only the lower melting peak but also the higher melting peak. The reason for the phenomenon must be the interaction between the two compositions.  相似文献   

10.
The aim of this paper is to report the effect of the addition of cellulose nanocrystals(CNCs) on the mechanical, thermal and barrier properties of poly(vinyl alcohol)/chitosan(PVA/Cs) bio-nanocomposites films prepared through the solvent casting process. The characterizations of PVA/Cs/CNCs films were carried out in terms of X-ray diffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), thermogravimetric analysis(TGA and DTG), oxygen transmission rate(OTR), and tensile tests. TEM and SEM results showed that at low loading levels, CNCs were dispersed homogenously in the PVA/Cs matrix. The tensile strength and modulus in films increased from 55.1 MPa to 98.4 MPa and from 395 MPa to 690 MPa respectively, when CNCs content went from 0 wt% to 1.0 wt%. The thermal stability and oxygen barrier properties of PVA/Cs matrix were best enhanced at 1.0 wt% of CNCs loading. The enhanced properties attained by incorporating CNCs can be beneficial in various applications.  相似文献   

11.
Effects of adding a small amount of poly(methyl methacrylate)-block-poly(vinyl acetate) (PMMA-b-PVAc) to poly(methyl methacrylate)/poly(vinyl acetate) (PMMA/PVAc) blends with a lower critical solution temperature (LCST) phase diagram on the kinetics of late-stage spinodal decomposition (SD) were investigated by time-resolved light scattering at 160°C. It is found that the coarsening process of the structure was slowed down or accelerated upon addition of PMMA-b-PVAc depending on the composition of the block copolymer and the blend. The effect of the block copolymer on the domain size were interpreted as compatibilizing and incompatibilizing effects of the block copolymer on PMMA/PVAc blends based on the evaluation of changes in the stability limits of PMMA/PVAc with the addition of block copolymer using random phase approximation (RPA).  相似文献   

12.
聚甲基丙烯酸甲酯与聚醋酸乙烯酯共混的红外光谱研究   总被引:2,自引:0,他引:2  
用红外光谱(FTIR)研究了聚甲基丙烯酸甲酯(PMMA)与聚醋酸乙烯酯(PVAc)共混体系相容性,在160℃以上共混体系发生相分离;分相体系与非分相体系的FTIR谱明显不同;共混体系的FTIR谱不能从两统组分红外光谱简单加和得到;结果表明大分子构象发生了变化,PMMA/PVAc体系相容可能是大分子构象熵变所致。  相似文献   

13.
吴强  杜淼  彭懋  左敏  郑强 《高分子学报》2007,(3):223-229
采用小角激光光散射(SALLS)并结合动态流变学方法,考察了气相法二氧化硅(SiO2)粒子的加入对聚甲基丙烯酸甲酯/苯乙烯-丙烯腈无规共聚物(PMMA/SAN)共混体系相行为的影响,得到了添加SiO2粒子前后的相图,发现SiO2粒子对基体相行为的影响与基体的组成有关.对PMMA/SAN(60/40)体系,加入SiO2粒子后相分离温度上升,但并未改变相分离机理,仍为亚稳单相分解过程(spinodal decomposition,SD);而对于PMMA/SAN(30/70)体系,加入SiO2粒子后却降低了体系的相分离温度.该现象可能是SiO2粒子和基体组分界面间组成与PMMA/SAN共混物基体组成的差异造成的.  相似文献   

14.
The blends of poly(hydroxyether of bisphenol A) (phenoxy) and poly(vinyl acetate) (PVAc) were prepared through in situ polymerization, i.e., the melt polymerization of diglycidy ether of bisphenol A (DGEBA) and bisphenol A in the presence of PVAc. The polymerization reaction started from the initial homogeneous ternary mixture of PVAc/DGEBA/bisphenol A; the phase separation induced by reaction occurred as the polymerization proceeded. The phenoxy/PVAc blends with PVAc content up to 20 wt % were obtained and were further characterized by the solubility, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscopy (SEM). The results indicate that no intercomponent reaction occurred during the in situ polymerization. All the blends display separate glass transition temperatures (Tg's); the very fine phase-separated morphology was obtained by this polymerization blending method. Mechanical tests show that the prepared blends exhibited substantial improvement of mechanical properties, especially in impact strength, which could be ascribed to the formation of the fine phase-separation morphology during in situ polymerization. The thermogravity analysis (TGA) of the blends showed that the thermal stability of the PVAc-rich phases in the blends was enhanced in comparison to the pure PVAc due to the synergistic contribution of the two phases in energy transportation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2329–2338, 1999  相似文献   

15.
Direct insertion probe pyrolysis mass spectrometry (DIP-MS) analyses of polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate), (PC/PMMA/PVAc), ternary blends have been performed. The PC/PMMA/PVAc ternary blends were obtained by coalescing from their common γ-cyclodextrin-inclusion compounds (CD-ICs), through the removal of the γ-CD host (coalesced blend), and by a co-precipitation method (physical blend). The coalesced ternary blend showed different thermal behaviors compared to the co-precipitated physical blend. The stability of PC chains decreased due to the reactions of CH3COOH formed by deacetylation of PVAc above 300 °C, for both coalesced and physical blends. This process was more effective for the physical blend most likely due to the enhanced diffusion of CH3COOH into the amorphous PC domains, where it can further react producing low molecular weight PC fragments bearing methyl carbonate chain ends. The decrease in thermal stability of PC chains was less significant for the coalesced ternary blend indicating that the diffusion of CH3COOH was either somewhat limited or competed with intermolecular reactions between PMMA and PC and between PMMA and PVAc, which were detected and were associated with their close proximity in the intimately mixed coalesced PC/PMMA/PVAc ternary blend.  相似文献   

16.
采用动态流变学方法,结合小角激光光散射(SALLS)测定,对聚甲基丙烯酸甲酯(PMMA)/聚(苯乙烯-丙烯腈)(SAN)共混体系的动态流变行为与相分离的关系进行了研究.发现在低频区域,时温叠加失效与共混物体系发生相分离有关,时温叠加失效温度Tb与用SALLS测定的浊点温度Tc一致,用低频区域动态储能模量G'与频率的关系[1gG'~lg(αT)]偏离线性粘弹模型或时温叠加失效温度表征PMMA/SAN共混体系的相分离是有效的.  相似文献   

17.
An investigation of the thermal stability of poly(methyl methacrylate) (PMMA) blends with poly(vinyl acetate) (PVAc) revealed that PVAc acts as a stabilizer as concerns thermal and photochemical degradation when the processes take place in air. The temperatures of decomposition of these blends are higher than that of pure PMMA. The efficiency of photodegradation and photooxidation in the blends is lower than that of pure PMMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号