首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Single-ligand complexes of first series transition metals with ammonia, water, hydroxide, and fluoride, many known in the gas phase, have been studied in calculations covering the 20 mono- and divalent cations and some very unusual binding patterns have been found. Binding energies and binding geometries were calculated at MP2 level, using a basis with a (6d/4d) contraction in the metal d space and 6-311+G sets for the ligands. The results were used to distinguish the effect of steadily increasing nuclear charge across the series from the varying effects of d shell occupation. Even with only one ligand, the M(2+) adducts displayed the familiar ligand field effects, d shell repulsion in the expected d(delta) < d(pi) < d(sigma) order being superimposed on a regular progression to stronger binding and shorter bonds; that progression was disturbed only at the d(5) and d(10) positions, when the d(sigma) orbital was occupied. Monovalent metal adducts behaved in strikingly different fashion, with irregular changes across early and late series metals in both bond length and bond strength. The irregularities are only partly attributable to the presence of both d(n)()(-)(1)s and d(n)() ground states in the series. The other part of the explanation is the binding of anionic ligands inside the radial maximum of the 4s orbital. At these distances the normal binding preference shown by H(2)O and NH(3) for d(n)() over sd(n)()(-)(1) cations is reversed. In contrast to steeply rising binding energies across the divalent metal ion adducts, the trend lines for the monovalent series are flat, the increments in nuclear charge being insufficent to offset the extra repulsion of electrons added to the d shell.  相似文献   

2.
Reaction of 2 molar equiv of the diamine chelated aryllithium dimers Li(2)(C(6)H(4)[CH(2)N(Et)CH(2)CH(2)NEt(2)]-2)(2) (Li(2)Ar(2)) with the appropriate metal bromide allows the synthesis of the first homologous series of monomeric group 11 bromoate complexes of type MLi(2)BrAr(2) (M = Cu (7), Ag (8), Au (9)). Both in the solid state and in solution, the bromocuprate 7 is isostructural with the bromoargentate 8. The crystal structures of 7 and 8 consist of a MLi(2) core, and each of the two aryl ligands bridges via electron-deficient bonding between the group 11 metal and one Li atom (d(C(ipso)-M) = 1.941(4) (mean) and 2.122(4) (mean) A, for 7 and 8, respectively). The bromine atom exclusively bridges between the two lithium atoms. Each of the ortho-CH(2)N(Et)CH(2)CH(2)NEt(2) moieties is N,N'-chelate bonded to one lithium (d(N-Li) = 2.195(5) and 2.182(0) (mean) A for 7 and 2.154(8) and 2.220(1) (mean) A for 8). Although the MLi(2)BrAr(2) compounds are neutral higher-order -ate species, the structure can also be regarded as consisting of a contact ion pair consisting of two ionic fragments, [Li-Br-Li](+) and [Ar(2)M](-), which are interconnected by both Li-N,N'-chelate bonding and a highly polar C(ipso)-Li interaction. On the basis of NMR and cryoscopic studies, the structural features of the bromoaurate 9 are similar to those of 7 and 8. A multinuclear NMR investigation shows that the bonding between the [Li-Br-Li] and [Ar(2)M] moieties is intermediate between ionic and neutral with an almost equally polarized C(ipso)-Li bond in 7, 8, and 9. Similar reactions between M(C(triple bond)N) and 2 molar equiv of LiAr yield the analogous 2:1 cyanoate complexes of type MLi(2)(C(triple bond)N)Ar(2) (M = Ag (10), Au (11)). Multinuclear NMR studies show that the cyanoate complexes 10 and 11 are isostructural with the bromoate complexes 7, 8, and 9. This paper illustrates that these cyanoaurates may serve as excellent model complexes to gain more insight into the structure of 2:1 cyanocuprates in solution.  相似文献   

3.
The divalent complexes [M(ttfpz)(2)(thf)(4)] (ttfpz = 3-(2'-thienyl)-5-(trifluoromethyl)pyrazolate; M = Yb, 1, Ca, 2, Sr, 3, Ba, 4; thf = tetrahydrofuran) and [M(ttfpz)(2)(dme)(n)] (M = Ca, 5, Sr, 6, Yb, 7, n = 2; M = Ba, 8, n = 3; dme = 1,2-dimethoxyethane) have been prepared by redox transmetallation/protolysis reactions employing the free metals, Hg(C(6)F(5))(2) and ttfpzH in donor solvents and their structures determined. The monomeric structures exhibit η(2)-bound pyrazolate ligands with eight-coordinate metal atoms for complexes 1-7 and a ten-coordinate metal for 8. The pyrazolate ligands in the thf-complexes 1-4 as well as dme-derivatives 5 and 6 are in a transoid configuration, whilst in complex 7 the ttfpz ligands exhibit a cisoid relationship. In 8 the ligands have an intermediate role in between cisoid and transoid.  相似文献   

4.
Density functional theory calculations have been used to investigate the structure and bonding of the d(3)d(3) bioctahedral complexes X(3)V(mu-S(CH(3))(2))(3)VX(3)(2)(-) (X = F(-), Cl(-), OH(-), SH(-), NH(2)(-)). According to geometry optimizations using the broken-symmetry approach and the VWN+B-LYP combination of density functionals, the halide-terminated complexes have a V-V bond order of approximately 2, while complexes featuring OH(-), SH(-), or NH(2)(-) as terminal ligands exhibit full triple bonding between the vanadium atoms. The tendency toward triple bonding in the latter complexes is consistent with an increased covalency of the vanadium-ligand bonds, and the influence of bond covalency is apparent also in the tendency for V-V bond elongation in the complexes with OH(-) and NH(2)(-) terminal ligands. Detailed examination of the composition of molecular orbitals in all of the thioether-bridged V(II) complexes substantiates the conclusion that the strong antiferromagnetic coupling which we have determined for these complexes (-J > 250 cm(-)(1)) is due to direct bonding between metal atoms rather than superexchange through the bridging ligands. As such, these V(II) complexes comprise the first apparent examples of multiple metal-metal bonding in first-transition-row, face-shared dinuclear complexes and are therefore of considerable structural and synthetic interest.  相似文献   

5.
We report on ab initio calculations at the G2(MP2) level of the structures and Al-N(P) bond complexation energies of the (CH(3))(n)H(3)(-)(n)AlNX(3) and (CH(3))(n)H(3)(-)(n)()AlPX(3) (X = H, F, and Cl; n = 0-3) donor-acceptor complexes. For the (CH(3))(3)AlNX(3) and (CH(3))(3)AlPX(3) complexes, the C(3)(v) symmetry is found to be favored, and for the other complexes the C(s) symmetry is found to be favored. The G2(MP2) calculated complexation energies show for the amine ligands the trend NH(3) > NCl(3) > NF(3). A similar trend PH(3) approximately PCl(3) > PF(3) is predicted for the phosphane ligands. The NBO partitioning scheme shows that there is no correlation between the stability and the charge transfer.  相似文献   

6.
Several tellurometalates of the general formula [MTe(7)](n)()(-) (n = 2, 3) have been isolated as salts of organic cations by reaction of suitable metal sources with polytelluride solutions in DMF. The [HgTe(7)](2)(-) anion has the same structure in both the NEt(4)(+) and the PPh(4)(+) salts except for a minor change in the ligand conformation. The [AgTe(7)](3)(-) and [HgTe(7)](2)(-) anions contain metal atoms coordinated in trigonal-planar fashion to eta(3)-Te(7)(4)(-) ligands. The central Te atom of an eta(3)-Te(7)(4)(-) ligand is coordinated to the metal atom and to two Te atoms in a "T"-shaped geometry consistent with a hypervalent 10 e(-) center. The planar [AuTe(7)](3)(-) anion may best be described as possessing a square-planar Au(III) atom coordinated to an eta(3)-Te(5)(4)(-) ligand and to an eta(1)-Te(2)(2)(-) ligand. The reaction of [NEt(4)](n)()[MTe(7)] (M = Hg, n = 2; M = Au, n = 3) with the activated acetylene dimethyl acetylenedicarboxylate (DMAD) has yielded the products [NEt(4)](n)()[M(Te(2)C(2)(COOCH(3))(2))(2)] (M = Hg, n = 2; M = Au, n = 1). The metal atoms are coordinated to two Te(COOCH(3))C=C(COOCH(3))Te(2)(-) ligands, for M = Hg in a distorted tetrahedral fashion and for M = Au in a square-planar fashion.  相似文献   

7.
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.  相似文献   

8.
The reaction of M(ox) x 2H(2)O (M = Co(II), Ni(II)) or K(2)(Cu(ox)(2)) x 2H(2)O (ox = oxalate dianion) with n-ampy (n = 2, 3, 4; n-ampy = n-aminopyridine) and potassium oxalate monohydrate yields one-dimensional oxalato-bridged metal(II) complexes which have been characterized by FT-IR spectroscopy, variable-temperature magnetic measurements, and X-ray diffraction methods. The complexes M(mu-ox)(2-ampy)(2) (M = Co (1), Ni (2), Cu (3)) are isomorphous and crystallize in the monoclinic space group C2/c (No. 15), Z = 4, with unit cell parameters for 1 of a = 13.885(2) A, b = 11.010(2) A, c = 8.755(1) A, and beta = 94.21(2) degrees. The compounds M(mu-ox)(3-ampy)(2).1.5H(2)O (M = Co (4), Ni (5), Cu (6)) are also isomorphous and crystallize in the orthorhombic space group Pcnn (No. 52), Z = 8, with unit cell parameters for 6 of a = 12.387(1), b = 12.935(3), and c = 18.632(2) A. Compound Co(mu-ox)(4-ampy)(2) (7) crystallizes in the space group C2/c (No. 15), Z = 4, with unit cell parameters of a = 16.478(3) A, b = 5.484(1) A, c = 16.592(2) A, and beta = 117.76(1) degrees. Complexes M(mu-ox)(4-ampy)(2) (M = Ni (8), Cu (9)) crystallize in the orthorhombic space group Fddd (No. 70), Z = 8, with unit cell parameters for 8 of a = 5.342(1), b = 17.078(3), and c = 29.469(4) A. All compounds are comprised of one-dimensional chains in which M(n-ampy)(2)(2+) units are sequentially bridged by bis-bidentate oxalato ligands with M.M intrachain distances in the range of 5.34-5.66 A. In all cases, the metal atoms are six-coordinated to four oxygen atoms, belonging to two bridging oxalato ligands, and the endo-cyclic nitrogen atoms, from two n-ampy ligands, building distorted octahedral surroundings. The aromatic bases are bound to the metal atom in cis (1-6) or trans (7-9) positions. Magnetic susceptibility measurements in the temperature range of 2-300 K show the occurrence of antiferromagnetic intrachain interactions except for the compound 3 in which a weak ferromagnetic coupling is observed. Compound 7 shows spontaneous magnetization below 8 K, which corresponds to the presence of spin canted antiferromagnetism.  相似文献   

9.
New copper(II) intercalation compounds, {[Cu(CA)(H(2)O)(2)](G)}(n)() (H(2)CA = chloranilic acid; G = 2,5-dimethylpyrazine (dmpyz) (1a and 1b) and phenazine (phz) (2)) have been synthesized and characterized. 1acrystallizes in the triclinic space group P&onemacr;, with a = 8.028(2) ?, b = 10.269(1) ?, c = 4.780(2) ?, alpha = 93.85(3) degrees, beta = 101.01(2) degrees, gamma = 90.04(3) degrees, and Z = 1. 1b crystallizes in the triclinic space group P&onemacr;, with a = 8.010(1) ?, b = 10.117(1) ?, c = 5.162(1) ?, alpha = 94.40(1) degrees, beta = 97.49(1) degrees, gamma = 112.64(1) degrees, and Z = 1. 2crystallizes in the triclinic space group P&onemacr;, with a = 8.071(1) ?, b = 11.266(1) ?, c = 4.991(1) ?, alpha = 97.80(1) degrees, beta = 99.58(1) degrees, gamma = 83.02(1) degrees, and Z = 1. For all the compounds, the crystal structures consist of one dimensional [Cu(CA)(H(2)O)(2)](m)() chains and uncoordinated guest molecules (G). Each copper atom for 1a, 1b, and 2 displays a six-coordinate geometry with the two bis-chelating CA(2)(-) anions and water molecules, providing an infinite, nearly coplanar linear chains running along the a-direction. Theses chains are linked by hydrogen bonds between the coordinated water and the oxygen atoms of CA(2)(-) on the adjacent chain, forming extended layers, which spread out along the ac-plane. The guest molecules are intercalated in between the {[Cu(CA)(H(2)O)(2)](k)()}(l)() layers, just like pillars, which are supported with N.H(2)O hydrogen bonding. The guest molecules are stacked each other with an interplanar distance of ca. 3.2 ? along the c-axis perpendicular to the [Cu(CA)(H(2)O)(2)](m)() chain. The EHMO band calculations of intercalated dmpyz and phz columns show an appreciable band dispersion of phz pi (b(2g) and b(3g)) and dmpyz pi (b(g)), indicative of the importance of planar pi structure for the formation of the intercalated structure. The distances of O-H---N (guest molecules) fall within the range 2.74-2.80 ?, insensitive to the guest, whereas the interlayer distances increase in the order 9.25 ? (1b), 10.24 ? (1a), and 11.03 ? (2). The degree in lengthening the distance correlates well with the size of a molecule, indicative of the stability of the 2-D sheet structure and the flexibility of the sheet packing. The magnetic susceptibilities were measured from 2 to 300 K and analyzed by a one-dimensional Heisenberg-exchange model to yield J = -1.83 cm(-)(1), g = 2.18 (1a), J = -0.39 cm(-)(1), g = 2.14 (1b), and J = -1.84 cm(-)(1), g = 2.18 (2). The absolute value of J is smaller than that value for [Cu(CA)](n)(), which has a planar ribbon structure suggesting that the magnetic orbital d(x)()()2(-)(y)()()2 is not parallel to the chloranilate plane. For comparison with phz another type of copper(II) coordination compound, {[Cu(CA)(H(2)O)](ohphz)}(n)() (ohphz = 1,2,3,4,6,7,8,9-octahydrophenazine (7)) has also been obtained. 7 crystallizes in the orthorhombic space group Cmcm with a = 7.601(2) ?, b = 13.884(2) ?, c = 17.676(4) ?, and Z = 4. Nonplanar ohphz molecules are in between [Cu(CA)(H(2)O)(2)](m)() chains with the N.H(2)O hydrogen bonding in a fashion parallel to the chain direction. The copper atom shows a five-coordinate square-pyramidal configuration with two CA and one water molecule, thus affording no hydrogen bonding links between chains, dissimilar to 1a, 1b, and 2. The magnetic susceptibilities yield J = -10.93 cm(-)(1) and g = 2.00, comparable to that of the four-coordinate [Cu(CA)](n)(). On this basis both hydrogen bonding and stack capability of a guest molecule is responsible for building the unique intercalated structure such as is seen in 1a, 1b, and 2.  相似文献   

10.
A series of dinickel(II) complexes with the 24-membered macrocyclic hexaazadithiophenol ligand H(2)L(Me) was prepared and examined. The doubly deprotonated form (L(Me))(2-) forms complexes of the type [(L(Me))Ni2II(mu-L')](n+) with a bioctahedral N(3)Ni(II)(mu-SR)(2)(mu-L')Ni(II)N(3) core and an overall calixarene-like structure. The bridging coordination site L' is accessible for a wide range of exogenous coligands. In this study L'=NO(3)(-), NO(2)(-), N(3)(-), N(2)H(4), pyrazolate (pz), pyridazine (pydz), phthalazine (phtz), and benzoate (OBz). Crystallographic studies reveal that each substrate binds in a distinct fashion to the [(L(Me))Ni(2)](2+) portion: NO(2)(-), N(2)H(4), pz, pydz, and phtz form mu(1,2)-bridges, whereas NO(3)(-), N(3)(-), and OBz(-) are mu(1,3)-bridging. These distinctive binding motifs and the fact that some of the coligands adopt unusual conformations is discussed in terms of complementary host-guest interactions and the size and form of the binding pocket of the [(L(Me))Ni(2)](2+) fragment. UV/Vis and electrochemical studies reveal that the solid-state structures are retained in the solution state. The relative stabilities of the complexes indicate that the [(L(Me))Ni(2)](2+) fragment binds anionic coligands preferentially over neutral ones and strong-field ligands over weak-field ligands. Secondary van der Waals interactions also contribute to the stability of the complexes. Intramolecular ferromagnetic exchange interactions are present in the nitrito-, pyridazine-, and the benzoato-bridged complexes where J=+6.7, +3.5, and +5.8 cm(-1) (H=-2 JS(1)S(2), S(1)=S(2)=1) as indicated by magnetic susceptibility data taken from 300 to 2 K. In contrast, the azido bridge in [(L(Me))Ni(2)(mu(1,3)-N(3))](+) results in an antiferromagnetic exchange interaction J=-46.7 cm(-1). An explanation for this difference is qualitatively discussed in terms of bonding differences.  相似文献   

11.
The two flexible multidentate ligands 1,3-bis(8-thioquinolyl)propane (C3TQ) and 1,4-bis(8-thioquinolyl)butane (C4TQ) were reacted with AgX (X = CF(3)SO(3)(-) or ClO(4)(-)) to give four new complexes: ([Ag(C3TQ)](ClO(4)))(n)() 1, ([Ag(C3TQ)](CF(3)SO(3)))(n)() 2, ([Ag(2)(C4TQ)(CF(3)SO(3))(CH(3)CN)](CF(3)SO(3)))(n)() 3, and ([Ag(C4TQ)](ClO(4)))(n)() 4. All complexes have been characterized by elemental analysis, IR, and (1)H NMR spectroscopy. Single-crystal X-ray analysis showed that chain structures form for all complexes in which the quinoline rings interact via various intra- (1) or intermolecular (2, 3, and 4) pi-pi aromatic stacking interactions, which in the latter cases results in multidimensional structures. Additional weak interactions, such as Ag.O and Ag.S contacts and C-H.O hydrogen bonding, are also present and help form stable, crystalline materials. It was found that the (CH(2))(n) spacers (n = 3 or 4) affect the orientation of the two terminal quinolyl rings, thereby significantly influencing the specific framework structure that forms. If the same ligand is used, on the other hand, then the different counteranions have the greatest effect on the final structure.  相似文献   

12.
The [Z(2)Ln(THF)](2)(mu-eta(2)():eta(2)()-N(2)) complexes (Z = monoanionic ligand) generated by reduction of dinitrogen with trivalent lanthanide salts and alkali metals are strong reductants in their own right and provide another option in reductive lanthanide chemistry. Hence, lanthanide-based reduction chemistry can be effected in a diamagnetic trivalent system using the dinitrogen reduction product, [(C(5)Me(5))(2)(THF)La](2)(mu-eta(2)():eta(2)()-N(2)), 1, readily obtained from [(C(5)Me(5))(2)La][BPh(4)], KC(8), and N(2). Complex 1 reduces phenazine, cyclooctatetraene, anthracene, and azobenzene to form [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(12)H(8)N(2))], 2, (C(5)Me(5))La(C(8)H(8)), 3, [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(14)H(10))], 4, and [(C(5)Me(5))La(mu-eta(2)-(PhNNPh)(THF)](2), 5, respectively. Neither stilbene nor naphthalene are reduced by 1, but 1 reduces CO to make the ketene carboxylate complex {[(C(5)Me(5))(2)La](2)[mu-eta(4)-O(2)C-C=C=O](THF)}(2), 6, that contains CO-derived carbon atoms completely free of oxygen.  相似文献   

13.
This work deals with the type and incidence of nonclassical Si--H and H--H interactions in a family of silylhydride complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(X)] (X=SiMe(n)Cl(3-n), H, Me, n=0-3) and [Fe(Cp)(Me(3)P)(SiMe(n)Cl(3-n))(2)H] (n=0-3). DFT calculations complemented by atom-in-molecule analysis and calculations of NMR hydrogen-silicon coupling constants revealed a surprising diversity of nonclassical Si--H and H--H interligand interactions. The compounds [Fe(Cp)(L)(SiMe(n)Cl(3-n))(2)H] (L=CO, PMe(3); n=0-3) exhibit an unusual distortion from the ideal piano-stool geometry in that the silyl ligands are strongly shifted toward the hydride and there is a strong trend towards flattening of the {FeSi(2)H} fragment. Such a distortion leads to short Si--H contacts (range 2.030-2.075 A) and large Mayer bond orders. A novel feature of these extended Si--H interactions is that they are rather insensitive towards the substitution at the silicon atom and the orientation of the silyl ligand relatively the Fe--H bond. NMR spectroscopy and bonding features of the related complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(Me)] (n=0-3) allow for their rationalization as usual eta(2)-Si--H silane sigma-complexes. The series of "dihydride" complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(2)] (n=0-3) is different from the previous two families in that the type of interligand interactions strongly depends on the substitution on silicon. They can be classified either as usual dihydrogen complexes, for example, [Fe(Cp)(OC)(SiMe(2)Cl)(eta(2)-H(2))], or as compounds with nonclassical H--Si interactions, for example, [Fe(Cp)(OC)(H)(2)(SiMe(3))] (16). These nonclassical interligand interactions are characterized by increased negative J(H,Si) (e.g. -27.5 Hz) and increased J(H,H) (e.g. 67.7 Hz).  相似文献   

14.
The atomic alignment effect has been studied for the dissociative energy transfer reaction of metal carbonyls (Fe(CO)(5), Ni(CO)(4)) with the oriented Ar ((3)P(2), M(J) = 2). The emission intensity from the excited metal products (Fe*, Ni*) has been measured as a function of the atomic alignment in the collision frame. The selectivity of the atomic orbital alignment of Ar ((3)P(2), M(J) = 2) (rank 2 moment, a(2)) is found to be opposite for the two reaction systems; the Fe(CO)(5) reaction is favorable at the Π configuration (positive a(2)), while the Ni(CO)(4) reaction is favorable at the Σ configuration (negative a(2)). Moreover, a significant spin alignment effect (rank 4 moment, a(4)) is recognized only in the Ni(CO)(4) reaction. The atomic alignment effect turns out to be essentially different between the two reaction systems; the Fe(CO)(5) reaction is controlled by the configuration of the half-filled 3p atomic orbital of Ar ((3)P(2)) in the collision frame (L dependence), whereas the Ni(CO)(4) reaction is controlled by the configuration of the total angular moment J (including spin) of Ar ((3)P(2)) in the collision frame (J dependence). As the origin of J dependence observed only in the Ni(CO)(4) reaction, the correlation (and/or the interference) between two electron exchange processes via the electron rearrangements is proposed.  相似文献   

15.
Hsieh CH  Hsu IJ  Lee CM  Ke SC  Wang TY  Lee GH  Wang Y  Chen JM  Lee JF  Liaw WF 《Inorganic chemistry》2003,42(12):3925-3933
The preparation of complexes trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) (1), cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) (2), trans-[Ni(-SC(6)H(4)-o-NH-)(2)](-) (3), and [Ni(-SC(6)H(4)-o-S-)(2)](-) (4) by oxidative addition of 2-aminophenyl dichalcogenides to anionic [Ni(CO)(SePh)(3)](-) proves to be a successful approach in this direction. The cis arrangement of the two tellurium atoms in complex 2 is attributed to the intramolecular Te.Te contact interaction (Te.Te contact distance of 3.455 A). The UV-vis electronic spectra of complexes 1 and 2 exhibit an intense absorption at 936 and 942 nm, respectively, with extinction coefficient epsilon > 10000 L mol(-)(1) cm(-)(1). The observed small g anisotropy, the principal g values at g(1) = 2.036, g(2) = 2.062, and g(3) = 2.120 for 1 and g(1) = 2.021, g(2) = 2.119, and g(3) = 2.250 for 2, respectively, indicates the ligand radical character accompanied by the contribution of the singly occupied d orbital of Ni(III). The X-ray absorption spectra of all four complexes show L(III) peaks at approximately 854.5 and approximately 853.5 eV. This may indicate a variation of contribution of the Ni(II)-Ni(III) valence state. According to the DFT calculation, the unpaired electron of complex 1 and 2 is mainly distributed on the 3d(xz)() orbital of the nickel ion and on the 4p(z)() orbital of selenium (tellurium, 5p(z)()) as well as the 2p(z)() orbital of nitrogen of the ligand. On the basis of X-ray structural data, UV-vis absorption, electron spin resonance, magnetic properties, DFT computation, and X-ray absorption (K- and L-edge) spectroscopy, the monoanionic trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) and cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) complexes are appositely described as a resonance hybrid form of Ni(III)-bis(o-amidochalcogenophenolato(2-)) and Ni(II)-(o-amidochalcogenophenolato(2-))-(o-iminochalcogenobenzosemiquinonato(1-) pi-radical; i.e., complexes 1 and 2 contain delocalized oxidation levels of the nickel ion and ligands.  相似文献   

16.
Theoretical examination [B3LYP/6-31G(d,p), PP/IGLO-III//B3LYP/6-31G(d,p), and NBO methods] of six-membered cyclohexane 1 and carbonyl-, thiocarbonyl-, or methylidene-containing derivatives 2-27 afforded precise structural (in particular, C-H bond distances) and spectroscopic (specifically, one-bond (1)J(C)(-)(H) NMR coupling constants) data that show the consequences of stereoelectronic hyperconjugative effects in these systems. Major observations include the following. (1) sigma(C)(-)(H)(ax)() -->(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() (Y = O, S, or CH(2)) hyperconjugation leads to a shortening (strengthening) of the equatorial C-H bonds adjacent to the pi group. This effect is reflected in smaller (1)J(C)(-)(H)(ax)() coupling constants relative to (1)J(C)(-)(H)(eq)(). (2) Comparison of the structural and spectroscopic consequences of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) hyperconjugation in cyclohexanone 2, thiocyclohexanone 3, and methylenecyclohexane 4 suggests a relative order of acceptor orbital ability C=S > C=O > C=CH(2), which is in line with available pK(a) data. (3) Analysis of the structural and spectroscopic data gathered for heterocyclic derivatives 5-12 reveals some additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y), pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)(), n(X) --> sigma(C)(-)(H)(ax)(), n(beta)(O) --> sigma(C)(-)(H)(eq)(), and sigma(S)(-)(C) --> sigma(C)(-)(H)(eq)() stereoelectronic effects that is, nevertheless, attenuated by saturation effects. (4) Modulation of the C=Y acceptor character of the exocyclic pigroup by conjugation with alpha-heteroatoms O, N, and S in lactones, lactams, and methylidenic analogues 13-24 results in decreased sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugation. (5) Additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugative effects is also apparent in 1,3-dicarbonyl derivative 25 (C=Y equal to C=O), 1,3-dithiocarbonyl derivative 26 (C=Y equal to C=S), and 1,3-dimethylidenic analogue 27 (C=Y equal to C=CH(2)).  相似文献   

17.
The series of complexes [CdX(2)(C(5)H(4)NCOOR)] (X = Cl or Br; R = Me, Et, Pr(n)() or Pr(i)()) and [CdX(2)(C(5)H(4)NCOOR)(2)] (X = I; R = Me, Et, Pr(n)(), or Pr(i)()) have been obtained by the addition reaction of esters of 2-pyridinecarboxylic acid to cadmium(II) halides. X-ray crystal structures of two complexes [CdI(2)(C(5)H(4)NCOOR)(2)], R = Me (10) and R = Pr(n)() (12), have been determined. In both cases, the structure consists of discrete neutral monomeric units where the cadmium atom has a distorted octahedral coordination with CdI(2)N(2)O(2) core, two halides being in cis disposition. Structural information is compared with that deduced from (113)Cd CPMAS NMR experiments. Chemical shift anisotropies are discussed in terms of distortions produced in cadmium octahedra. The orientation of the principal axes of (113)Cd shielding tensor is also analyzed and related to the disposition of ligands in the structures of two analyzed compounds.  相似文献   

18.
Two tridentate thioether pincer ligands, 1,3-(RSCH(2))(2)C(6)H(4) (R = (t)()Bu, 1a; R = (i)()Pr, 1b) underwent cyclometalation using [(COE)(2)RhCl](2) in air/moisture-free benzene at room temperature. The resultant complexes, [mu-ClRh(H)(RSCH(2))(2)C(6)H(3)-2,6](2) (R = (t)Bu, 2a; R = (i)Pr, 2b) are dimeric both in the solid state and in solution. A battery of variable-temperature one- and two-dimensional (1)H NMR experiments showed conclusively that both complexes undergo dynamic exchange in solution. Exchange between two dimeric diastereomers of 2a in solution occurred via rotation about the Rh-C(ipso) bond. The dynamic exchange of 2b was significantly more complex as an additional exchange mechanism, sulfur inversion, occurred, which resulted in the exchange between several diastereomers in solution.  相似文献   

19.
Experimental studies of the consecutive growth of N2H + (H2)n clusters led to the discovery of an unusual bonding pattern for species with n = 2-4. Theoretical studies revealed that the ligands are located within five well-separated solvation shells that are visible in structures, values of successive enthalpies and entropies of clustering reactions, vibrational motions, the distribution of atomic charges, and interaction energy decomposition components. The pattern of consecutive enthalpy changes for the second shell (n = 2-5) is complicated. This pattern shows anomalous behavior, although its interpretation is not univocal. A large part of consecutive enthalpies for the clustering reactions is a contribution due to the rotational and vibrational properties of clusters which are difficult for adequate modeling in large systems. The structures of clusters are rationalized based on interaction energy contributions of a different nature. Geometries of complexes are determined by prevailing covalent forces.  相似文献   

20.
The reaction between VO(OR)(3) (R = (i)()Pr, (t)()Bu, CH(2)CF(3)) and the chelating dianionic bis(phenoxy)amine ligand [ONNO]H(2) affords a mixture of two isomers (A and B in a ratio A:B approximately 3:1) formulated as VO(OR)[ONNO] (1a-c) (R = (i)()Pr (1a), (t)Bu (1b), CH(2)CF(3) (1c)). Multinuclear and NOESY NMR spectroscopy experiments were able to determine the structure in solution of the complexes. Both isomers have the symmetry-related phenolate groups in a trans configuration, the difference arising from the different configuration of the oxo and alkoxo ligands being located either cis (in isomer A) or trans (in isomer B) to the tripodal amino nitrogen donor atom and the (dimethylamino)ethyl sidearm respectively for the oxo and the alkoxo ligands. Crystals of isomer A (cis-1a) were obtained, and the structure determination confirms the arrangement of the ligands around the vanadium center. Analogue complexes VO(X)[ONNO] (X = Cl (2); X = N(3) (3)) were prepared by reacting equimolar amount of [ONNO]H(2) and VO(X)(n)(OR)(3-n) (X = Cl, R = Et, n = 1; X = N(3), R = (i)Pr, n = 2) at ambient temperature. Compounds 2 and 3 were further characterized by NMR spectroscopy experiments and X-ray structure determination. For both 2 and 3, a single isomer is obtained, having a trans-(O,O) configuration for the phenolate groups and a trans configuration of the oxo ligand in respect to the tripodal amino nitrogen donor atom. Finally, complex 2 could also be obtained by chlorination of 1a or 3 using a large excess of ClSiMe(3) in refluxing toluene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号