首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid chromatography under limiting conditions of desorption (LC LCD) is a method which allows molar mass independent elution of various synthetic polymers. A narrow, slowly moving zone of small molecules, which promotes full adsorption of one kind of polymer species within column (an adsorli) acts as an impermeable barrier for the fast moving macromolecules. The latter accumulate on the barrier edge and elute nearly in total volume of liquid within column. At the same time, transport of less adsorptive macromolecules is not hampered so that these are eluted in the size exclusion (SEC) mode. As result, polymers differing in their polarity and adsorptivity can be easily separated without molar mass interference. Three methods of barrier creation are discussed and compared. It is shown that a fraction of sample may elute unretained if the adsorli sample solvent is used as a barrier in connection with a narrow-pore column packing. One part of excluded macromolecules likely breaks-out from the adsorli zone and this results in partial loss of sample and distortion of the LC LCD peaks. This problem can be avoided if the adsorli zone is injected immediately before sample solution. Applicability of the LC LCD method for polymer separation has been demonstrated with a model mixture of poly(methyl methacrylate) (adsorbing polymer) and polystyrene (non adsorbing polymer) using bare silica gel as a column packing with a combination of tetrahydrofuran (a desorption promoting liquid -a desorli) and toluene (adsorli). It has been shown that the LC LCD procedure with tandem injection allows simple and fast discrimination of polymer blend components with good repeatability and high sample recovery. For quantitative determination of molar masses of both LC LCD and SEC eluted polymers, an additional size exclusion chromatographic column can be applied either in a conventional way or in combination with a multi-angle light scattering detector. A single eluent is used in the latter column, which separates the mixed mobile phase, system peaks and the desorli zone from the polymer peaks so that measurements are free from disturbances caused by the changing eluent composition. The resulting LC LCD x SEC procedure has been successfully applied to poly(methyl methacrylate) samples.  相似文献   

2.
Low solubility polymers, poly(ethylene terephthalate), PET and poly(butylene terephthalate), PBT were mutually separated at ambient temperature with help of a novel method, liquid chromatography under limiting conditions of desorption, LC LCD. The results demonstrate high selectivity of LC LCD, which enabled discrimination of macromolecules of well similar chemical structure, irrespectively of their molar mass. Above poly(terephthalate)s were also readily base-line separated from the aliphatic biodegradable polyesters poly(l-lactic acid) and poly(butylene adipate). The experimentally feasible LC LCD method produces narrow, focused peaks of polymers eluted behind the adsorption promoting barrier of appropriate liquid. This merit of LC LCD enables discrimination and identification of minor macromolecular constituents of multicomponent polymers and facilitates the application of method as an integral part of two-dimensional liquid chromatography for comprehensive molecular characterization of complex polymer systems.  相似文献   

3.
《Liquid crystals》2000,27(8):1097-1101
The photo-optical behaviour of two series of chiral photochromic acrylic copolymers with a chiral nematic phase has been studied. These copolymers contain identical chiral photochromic units, but have different structures of the phenyl benzoate mesogenic side groups which are responsible for the development of LC phases. This approach allowed us to examine specific features of the photo-optical behaviour of the copolymers as a function of the nature of the LC 'matrix' in which the cholesteric phase was induced. The action of UV irradiation was shown to lead to the E-Z isomerization of the chiral side groups and, as a consequence, to untwisting of the cholesteric helix of the copolymers. For copolymers of both series, the effective quantum yields of this photochemical process were calculated. In the case of copolymers in which the cholesteric mesophase is induced in a smectogenic matrix, the corresponding values of the quantum yield are lower and depend slightly on temperature. A plausible explanation of the above phenomena is suggested.  相似文献   

4.
The photo-optical behaviour of two series of chiral photochromic acrylic copolymers with a chiral nematic phase has been studied. These copolymers contain identical chiral photochromic units, but have different structures of the phenyl benzoate mesogenic side groups which are responsible for the development of LC phases. This approach allowed us to examine specific features of the photo-optical behaviour of the copolymers as a function of the nature of the LC 'matrix' in which the cholesteric phase was induced. The action of UV irradiation was shown to lead to the E-Z isomerization of the chiral side groups and, as a consequence, to untwisting of the cholesteric helix of the copolymers. For copolymers of both series, the effective quantum yields of this photochemical process were calculated. In the case of copolymers in which the cholesteric mesophase is induced in a smectogenic matrix, the corresponding values of the quantum yield are lower and depend slightly on temperature. A plausible explanation of the above phenomena is suggested.  相似文献   

5.
We propose a new optical method and the experimental set-up for measuring the anisotropic shear viscosities of nematic liquid crystals (LCs). LC shear viscosities can be optimized to improve liquid crystal display (LCD) response times, e.g. in vertical aligned nematic (VAN) or bistable nematic displays (BND). In this case a strong back-flow effect essentially determines the LCD dynamic characteristics. A number of shear viscosity coefficients defines the LCD response time. The proposed method is based on the special type of a shear flow, namely, the decay flow, in the LC cell with suitably treated substrates instead of magnetic or electric field application. A linear regime of a quasi-stationary director motion induced by a pressure difference and a proper configuration of a LC cell produces decay flow conditions in the LC cell. We determine three principal shear viscosity coefficients by measuring relative time variations of the intensity of the light passed through LC cells. The shear viscosity coefficient measurements provide a new opportunity for the development of new LC mixtures with fast response times in VAN, BND and other important LCD types.  相似文献   

6.
We propose a new optical method and the experimental set-up for measuring the anisotropic shear viscosities of nematic liquid crystals (LCs). LC shear viscosities can be optimized to improve liquid crystal display (LCD) response times, e.g. in vertical aligned nematic (VAN) or bistable nematic displays (BND). In this case a strong back-flow effect essentially determines the LCD dynamic characteristics. A number of shear viscosity coefficients defines the LCD response time. The proposed method is based on the special type of a shear flow, namely, the decay flow, in the LC cell with suitably treated substrates instead of magnetic or electric field application. A linear regime of a quasi-stationary director motion induced by a pressure difference and a proper configuration of a LC cell produces decay flow conditions in the LC cell. We determine three principal shear viscosity coefficients by measuring relative time variations of the intensity of the light passed through LC cells. The shear viscosity coefficient measurements provide a new opportunity for the development of new LC mixtures with fast response times in VAN, BND and other important LCD types.  相似文献   

7.
A series of block copolymers consisting of an isotropic (polystyrene) block and a side-chain liquid crystallineblock (LC) have been studied using small-angle X-ray scattering and dielectric spectroscopy. The triblock copolymer (PS-LC-PS) displays an order-to-order transition (OOT) together with the isotropic/nematic transition of the LC phase. The seriesof diblock copolymers show no clear OOT but the phase diagram differs from that of non-LC block copolymers. Thesegmental dynamics as measured with dielectric spectroscopy is dominated by the α and δ relaxation of the LC block. Bothdisplay a WLF like temperature dependence. The relaxation times are influenced by the constraints of the nanoscale domains.They are decreased for the LC confined in the domain as compared to the LC in the continuous matrix.  相似文献   

8.
It is shown that in LC of polymers, the interaction parameter in ternary mobile phases can be described by a plane, which is determined by the dependencies in binary mobile phases. Instead of a critical adsorption point, critical conditions are observed along a straight line of composition between the two critical points in binary mobile phases. Consequently, a separation of block copolymers under critical conditions for one block by an adsorption mechanism for the other block can be achieved in ternary mobile phases of different compositions, which allows an adjustment of the retention of the adsorbing block.  相似文献   

9.
Temperature was investigated as active parameter in the liquid chromatography (LC) analysis of octylphenol ethoxylates. Significant differences in selectivity were observed when the oligomers were analyzed by reversed phase LC (RPLC) on silica-, zirconia- and polystyrene/divinylbenzene based stationary phases at low (ambient), medium and elevated temperature with acetonitrile/water as mobile phase. As ascertained by LC-mass spectroscopy (MS), in most cases the elution order of the oligomers was completely reversed comparing ambient and high temperature separations. On a graphitized carbon type column, the selectivity remained unchanged, regardless the analysis temperature. Also in normal phase LC, the elution order remained unaffected by temperature variations both for acetonitrile/water and methanol/water mixtures as mobile phase. Surprisingly, when reversed phase LC on a octadecylsilicagel column at different temperatures was repeated with methanol instead of acetonitrile as mobile phase ingredient, the reversal of elution order did not take place. Results are evaluated in terms of thermodynamic parameters.  相似文献   

10.
The domain microstructure and the nematic LC mesophase in a series of side-chain liquid crystalline/isotropic (LC/I) diblock copolymers with systematically varied block volume fractions were studied in a broad temperature range (25–170 °C) by DSC, polarized microscopy, and wide and small angle X-ray scattering. At all temperatures the block copolymers are microphase separated. The PSLC block copolymers exhibit order at two length-scales: on one hand, a nematic LC mesophase with characteristic length-scale of 0.43 nm (intermesogen distance); on the other hand, lamellar, hexagonal or cubic domain microstructures with characteristic length-scales of 27–44 nm (lattice parameter). The LC block was either located in the matrix or confined inside the microdomains. The thermotropic behavior is characterized by the sequence g/~35 °C/n/~115 °C/i and is not affected by the domain microstructure and/or dimensions. Analysis of the lamellar dimensions showed that the LC chain is stretched. With increasing temperature, a thermal expansion of both blocks takes place followed by a retraction of the LC chain above TNI. The phase diagram is asymmetric and does not alter above TNI. No order-to-order transitions triggered by the nematic-isotropic transition are observed. It was shown that domain microstructures of low interfacial curvature (lamellar and hexagonal) are energetically favored over the geometrically expected ones of high interfacial curvature (micellar cubic) due to the presence of nematic LC mesophase in the matrix or in the microdomains. By comparison to theory a Kuhn segment length of the LC block bLC=0.86 nm was derived from the location of the lamellar/hexagonal phase boundaries.This paper is dedicated to Prof. Fischer on the occasion of his 75th birthday.  相似文献   

11.
Abstract

Copolymers of styrene-methacrylate (methyl-, ethyl-, and n-butyl-) and styrene-acrylate (methyl-, ethyl-, and n-butyl-) were prepared by solution polymerization at a low degree of conversion. These copolymers were separated according to composition by liquid adsorption chromatography. Silica gel was the stationary phase and a mixture of chloroform and ethanol was the mobile phase. Ethanol content in the mobile phase affected the elution of the copolymers and methacrylate or acrylate rich copolymers required much ethanol to elute from a column. The retention of the copolymers was controlled by column temperature and the copolymers tended to retain in a column at higher column temperature. A linear gradient elution method way to increase ethanol in the mobile chase was effective to separate the copolymers in the order of increasing the methacrylate or acrylate content. Styrene rich copolymers eluted first from a column. Resolution between two adjacent peaks was improved with the increase in column temperature. In a mixture of copolymers of styrene-methacrylate or styrene-acrylate (methyl, ethyl, and n-butyl) having the same styrene content, the elution was in the order of n-butyl, ethyl, and methyl methacrylate or acrylate copolymers with styrene. In copolymrs having the same styrene content, a mixture of copolymrs having diffrent ester groups was separated and a mixtue of copolymrs having the same estr group (e.g., styrene-methyl mth-acrylate and styrene-methyl acrylate copolymers) was not separated.  相似文献   

12.
《Liquid crystals》2000,27(8):1123-1128
New semi-rigid copoly(imide-carbonate)s composed of 3,4,3",4"-p-terphenyltetracarboxdi-imide and 3,4,3',4'-biphenyltetracarboxdi-imide units and neighbouring homologous penta- and hexa-methylene spacer chains were prepared by melt polycondensation; the relationships between polymer structure and liquid crystalline (LC) properties are discussed. Differential scanning calorimetry measurements, polarizing microscope observations, miscibility tests and variable temperature X-ray analyses suggest that the 3,4,3",4"-p-terphenyltetracarboxdi-imide-rich copolymers form thermotropic LC nematic and smectic phases, but the 3,4,3',4'-biphenyltetracarboxdi-imide-rich copolymers are amorphous and have no LC melts. Therefore, the presence of 3,4,3",4"-p-terphenyltetracarboxdi-imide units confers good mesogenic properties.  相似文献   

13.
A series of smectic C* liquid-crystalline (LC) block copolymers were successfully synthesized via the living anionic polymerization of polystyrene with optically active methacrylate monomers containing (S)-2-methylbutyl 4-(4-hydroxyphenylcarbonyloxy)-biphenyl-4′-carboxylate mesogens. These materials are the first reported smectic C* block copolymers. Anionic polymerization in tetrahydrofuran (THF) at −70°C leads to LC block molecular weights of approximately twenty repeating units. The number-average molecular weight of the polystyrene block was varied from 7000 to 20000 to adjust the composition in the block copolymers. Differential scanning calorimetry and optical microscopy indicate that the smectic C* phase is present in the systems over broad temperature ranges.  相似文献   

14.
Liquid crystal (LC) alignment layers were prepared by fabricating solution-processed HfZnO films, annealing them, and treating them with ion beam (IB) irradiation, and the effect of annealing temperature upon the resulting film properties was studied. Homogeneous LC alignment was achieved on IB-irradiated HfZnO films. Topographical changes were observed from field-emission scanning electron microscopy as annealing temperature increased. X-ray photoelectron spectroscopy analysis showed that IB irradiation resulted in oxidation of HfZnO surfaces, which caused the LCs to be oriented more uniformly. The best electro-optical characteristics observed corresponded to the annealing temperature of 200°C. The low optimal annealing temperature for fabricating the HfZnO films suggested that this material has remarkable potential for LCD applications.  相似文献   

15.
New semi-rigid copoly(imide-carbonate)s composed of 3,4,3",4"-p-terphenyltetracarboxdi-imide and 3,4,3',4'-biphenyltetracarboxdi-imide units and neighbouring homologous penta- and hexa-methylene spacer chains were prepared by melt polycondensation; the relationships between polymer structure and liquid crystalline (LC) properties are discussed. Differential scanning calorimetry measurements, polarizing microscope observations, miscibility tests and variable temperature X-ray analyses suggest that the 3,4,3",4"-p-terphenyltetracarboxdi-imide-rich copolymers form thermotropic LC nematic and smectic phases, but the 3,4,3',4'-biphenyltetracarboxdi-imide-rich copolymers are amorphous and have no LC melts. Therefore, the presence of 3,4,3",4"-p-terphenyltetracarboxdi-imide units confers good mesogenic properties.  相似文献   

16.
Abstract : A series of comb-like copolymers and homopolymers containing different liquid-crystalline and perfluoralkyl side chains was studied by frequency and temperature dependent dielectric measurements. The structure and the phase behaviour of the systems were characterized by X-ray scattering and differential scanning calorimetry. The dielectric relaxation spectra of these polymers reflect the molecular mobility in bilayer structures formed by the mesogenic or crystalline side chains. By changing temperature it was possible to investigate the molecular motions in the different phases of the copolymers (smectic-crystalline, smectic-isotropic, and isotropic). The homopolymer containing perfluoralkyl side chains and all copolymers show a β-relaxation at low temperatures, which is assigned to local molecular motions. Above the glass transition temperature, all samples exhibit a segmental (α) relaxation with WLF-like temperature dependence in the activation plots. For the polymers forming LC structures only one relaxation process was detected in all phases, i.e. in the smectic, nematic, and isotropic structure or, in case of the copolymers, in the smectic-crystalline and smectic-isotropic double structures. This process was attributed always to the segmental motions, assisted by tumbling motions of the mesogens. The phase transitions are clearly indicated by discontinuities in the dielectric relaxation times and changes in the relaxation strength Δϵ. The dipole reorientations of the mesogens seem to be more restricted by the crystalline layers in the copolymers as by the smectic order of the LC homopolymers.  相似文献   

17.
Ethylammonium formate (EAF), an inexpensive and easily synthesized room-temperature ionic liquid, acts like a conventional organic solvent for reversed-phase liquid chromatography (LC). In this report, the use of standard ion-pair reagents with this ionic liquid LC mobile phase and a polystyrene-divinylbenzene PRP-1 column is explored. Starting with the column equilibrated with a methanol mobile phase, the required equilibration time of the column by the EAF ion-pair mobile phase is determined by the plate number profile. Chromatograms of six aromatic carboxylic acids, with either methanol or EAF as the mobile phase, at room temperature (in the absence of an ion-pairing agent) lack resolution with significant peak overlap of nitro-substituted benzoic acids. The addition of 30mM tetrabutylammonium ion to the EAF or methanol mobile phase provides baseline resolution for all peaks in approximately 10 min. Analogous studies using a mixture of four aromatic amines, including protonated tyramine, diphenhydramine, and neutral nitroanilines in the absence or presence of 30mM sodium dodecylsulfate (SDS) in the mobile phase are similar to those for the aromatic acids, indicating baseline resolution with only the ion-pair reagent. Raising the column temperature to 55 degrees C improves the plate count by a factor of approximately 1.2 when using the EAF mobile phase. The retention factor profiles for either the carboxylic acids or the amines, as a function of the organic modifier percentage or ion-pair reagent concentration, are similar for both EAF and methanol. The polymerized acyl monoglycinate surfactant, poly(sodium-N-undecenoyl glycinate), is used for the first time as an LC ion-interaction reagent and is about as effective as SDS for the resolution of organic amines.  相似文献   

18.
Once a suitable stationary phase and column dimensions have been selected, the retention in liquid chromatography (LC) is traditionally adjusted by controlling the mobile phase composition. Solvent gradients enable achievement of good separation selectivity while decreasing the separation time as compared to isocratic elution. Capillary columns allow use of other programming parameters, i.e. temperature and applied electric fields, in addition to solvent gradient elution. This paper presents a review of programmed separation techniques in miniaturized LC, including retention modeling and method transfer from the conventional to micro- and capillary scales. The impact of miniaturized instrumentation on retention and the limitations of capillary LC are discussed. Special attention is focused on the gradient dwell volume effects, which are more important in micro-LC techniques than in conventional analytical LC and may cause significant increase in the time of analysis, unless special instrumentation and (or) pre-column flow-splitting is used. The influence of temperature upon retention is also discussed, and applications where the temperature has been actively used for retention control in capillary LC are included together with the instrumentation utilized. Finally the possibilities of additional selectivity control by applying an electric field over a packed capillary LC column are discussed.  相似文献   

19.
The design and preparation of liquid crystalline (LC) block copolymers by use of azo-macroinitiators are outlined. This approach is very versatile and makes it possible to realize diverse architectures of block copolymers, including non-LC/side-chain, non-LC/main-chain and side-chain/main-chain block copolymers. The different blocks were phase separated and underwent their individual phase transitions. In side-chain/main-chain block copolymers different LC mesophases coexisted in equilibrium.  相似文献   

20.
Summary: Complex polymers are distributed in more than one direction of molecular heterogeneity. In addition to the molar mass distribution, they are frequently distributed with respect to chemical composition, functionality, and molecular heterogeneity. One approach for the analysis of the heterogeneity of complex polymers is their chromatographic separation by combining different separation mechanisms. A typical experimental protocol includes the separation of the sample according to composition to yield fractions that are chemically homogeneous. These fractions are transferred to a size‐selective separation method and analyzed with respect to molar mass. As a result of this two‐dimensional (2D) separation, information on both types of molecular heterogeneity is obtained. So far, 2D chromatography has been applied mostly to polymers that are soluble in organic solvents. There are several problems related to the use of aqueous mobile phases in polymer chromatography. These problems relate to the very polar or ionic character of the polymers and the experimental conditions, including the use of salt‐containing eluents. The present paper addresses the different parameters that influence the chromatographic experiments. For a model polymer system resulting from the grafting of methacrylic acid (MAA) onto poly(ethylene glycol) (PEG), i.e., PEG‐g‐PMAA, it will be shown that different chromatographic techniques including SEC, LC‐CC, and 2D chromatography, as well as coupled LC‐CC/FT‐IR can be used to analyze the molecular complexity of the copolymers.

LC‐CC/FT‐IR spectra of a PEG‐g‐PMAA sample as function of the elution volume.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号