首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Naturally occurring hydrolyzable (HT) and condensed (CT) tannins and their monomeric units were tested for their ability to inhibit the stimulation of DNA synthesis by UVB radiation. Hairless mice were irradiated with either single (200 mJ/cm2) or multiple (150 mJ/cm2) doses of UVB applied at 24 h intervals and epidermal DNA synthesis was measured at different times after the last of these treatments. The peak of DNA synthesis that is observed 48–56 h after a single UVB irradiation shifts to an earlier time of 16–24 h after multiple UVB treatments. Interestingly, the early inhibitory period of DNA synthesis observed 8 h after a single UVB treatment is not detected following multiple UVB treatments. Rather, DNA synthesis is stimulated six-fold 24 h after multiple UVB treatment, a response that is higher than the peak occurring 48–56 h after a single UVB irradiation. The disappearance of the early period of inhibition when the peak of DNA synthesis shifts to an earlier time may be linked to reactive oxygen species brought to the epidermis by infiltrating leukocytes, which, in turn, act as second messengers to stimulate growth signals in cells. Topical applications of HT or CT remarkably inhibit the DNA responses to single and multiple UVB treatments, an effect that is dependent on the dose and time of administration. Indeed, the peak stimulation of DNA synthesis is maximally inhibited when 17 mg of Tarapod tannic acid (TA), an HT, are applied topically 20 min before a single UVB treatment. The polymeric tannins inhibited DNA synthesis to a greater degree than equal doses of their monomeric units, gallic acid and catechin. These results suggest that various oligomeric HT and CT may be useful against tumor-promoting responses associated with the exposure of skin to physical carcinogens.  相似文献   

2.
Abstract Effects on lens physiology of UVB and UVA used separately and sequentially were investigated using 4 week old rabbit lenses in organ culture. Narrowband UVB at 0.3 J/cm2= joules/lens (1 h exposure) has little effect on sodium and calcium concentrations in the lens interior or transparency of lenses subsequently cultured for 20 h after a 1 h exposure. With an incident energy of 3 J/cm2 of broadband UVB (295–330 nm), lenses become opaque and slightly swollen with significant ion imbalances during culture over a 1 day period. In contrast, lenses exposed to approximately 6–24 J/cm2 of UVA (330–400 nm) remain transparent after 1 day of culture. Extended culture up to 4 days reveals no signs of opacification. Ion homeostasis and normal lens hydration are also maintained in UVA-irradiated lenses. The presence of 95% oxygen during UVA irradiation is also without effect. Broadband UVA irradiation is damaging, however, if lenses are first exposed to subthreshold doses of narrowband UVB (307 ± 5 nm) irradiation, viz . 0.3 J/cm2. Thus, sequential UVB/UVA irradiation at subthreshold doses causes impaired active cation transport and accumulation of sodium and calcium accompanying lens opacification.  相似文献   

3.
[14C]Arachidonic acid was avidly incorporated into human keratinocytes in culture and following exposure to UVB irradiation of 9 mJ/cm2 (erythemally effective, EE) substantial amounts of 14C-radiolabel were released from the cells. The release of radiolabel was accompanied by a decrease in the labelling of phosphatidylethanolamine whereas the labelling of triacylglycerols and cholesteryl esters was increased. Keratinocytes produced significant amounts of prostaglandin E2 (PGE2) and following UVB irradiation of 9 mJ/cm2 (EE) the formation of prostaglandin E2 was increased.
Etretin (Ro 10-1670), the active metabolite of the antipsoriatic drug etretinate (Ro 10-9359), affected significantly neither the total release of radiolabel induced by UVB nor the formation of prostaglandin E2. However, in the presence of etretin the UVB irradiation induced transfer of [l4C]arachidonic acid into triacylglycerols and cholesteryl esters was not increased as much as in the corresponding experiments without etretin. On the basis of the present study it appears that etretin does not interfere with the release of arachidonic acid in amounts which could be related to the therapeutic effects of the combination of retinoids with UVB irradiation (Re-UVB) in the treatment of psoriasis.  相似文献   

4.
Abstract— -Urocanic acid (UCA) represents the major ultraviolet B (UVB, 290–320 nm)-absorbing component of the skin. Trans-UCA is naturally produced in the stratum corneum and converts to the cis isomer upon UVB irradiation. In this study, we examined the effect of purified cis -UCA (about 99% of cis isomer) on the human Langerhans cell (LC) allostimulatory function by using the mixed epidermal cell-lymphocyte reaction (MELR). We found that addition of increasing amounts (6.5–400 μg/mL) of purified cis-UCA or (rara-UCA did not modify the T-cell response supported by enriched LC (eLC: 8–25% LC) as well as purified LC (pLC: 70–90% LC) suspensions. Because cis-UCA had no effect on the allostimulatory function of untreated LC, we investigated whether this compound could modify T-cell proliferation induced by UVB-irradiated LC. The UVB exposure of eLC or pLC to 100 J/m2 significantly inhibited the capacity of both suspensions to mount a T-cell response. However, addition of cis- UCA did not potentiate this UVB-induced immunosuppression. The eLC or pLC were then incubated with cis-UCA for 18 h at 37°C and washed before adding to allogeneic T cells. The obtained proliferative response was similar to that induced by control LC incubated in medium alone, demonstrating that pretreatment with cis -UCA did not alter human LC function. In conclusion, these results strongly suggest that cis-UCA has no direct effect on human LC antigen-presenting function.  相似文献   

5.
Abstract— C3H mice were irradiated three times a week for up to 6 weeks with either 500 J/m2 or 1000 J/m2 broadband UVB (270–350 nm) or 3000 J/m2 narrowband UVB (311–312 nm; TL01 source). Each dose was suberythemal to the mouse strain used. The number of Langerhans cells (LC) in the epidermis was reduced by over 50% after 2 weeks of irradiation with the UVB source and by 20% following TL01 irradiation. Continued irradiation for up to 6 weeks resulted in no further decrease in LC numbers in the case of the UVB source but a steady decline to 40% in the case of the TL01 source. Sunburn cells were detected following irradiation with both sources but the numbers were very low in comparison with acute exposure. Ultraviolet-B exposure resulted in doubling of the thickness of the epidermis throughout the 6 weeks of irradiation while TL01 exposure did not alter epidermal thickness. Conversion of trans- to ew-urocanic acid (UCA) was observed with both UVB and TL01 sources. The percentage of cis -UCA started to return to normal after 4 weeks of TL01 exposure despite continued irradiation. As observed following a single exposure, the contact hypersensitivity (CH) response was significantly reduced following 6 weeks of UVB irradiation but was unaffected by TL01 exposure, indicating no correlation between cis -UCA levels and CH response. Total serum immunoglobulin levels remained unchanged throughout the 6 weeks of UVB or TL01 irradiation but IgE titers significantly increased in all cases in the first 2 weeks of irradiation, indicating a possible shift to a TH2 cytokine profile. The IgE levels started to return to normal at later times. Thus chronic broadband UVB exposure induces a number of cutaneous and systemic responses that are likely to be dose dependent, while chronic TL0I exposure induces only some of the these responses.  相似文献   

6.
Abstract— An immunochemical assay, i.e. sandwich enzyme-linked immunosorbent assay, has been modified to detect UV-induced damage in cellular DNA of monolayer-grown human melanocytes. The method is based on the binding of a monoclonal antibody to single-stranded DNA. The melanocytes derived from human foreskin of skin type II individuals were suspended and exposed to UVA, UVB, solar-simulated light or γ-rays. Following physiological doses of UVA, UVB or solar-simulated light, a dose-related DNA unwinding comprising a considerable number of single-strand breaks (ssb) was observed. No correlation was found between different seeded cell densities or different culturing periods and the UVA sensitivity of the cells. After UVA irradiation, 0.07 ssb/1010 Da/kJ/m2 were detected and after UVB irradiation 1.9 ssb/1010 Da/kJ/m2 were seen. One minimal erythema dose of solar-simulated light induced 2.25 ssb/1010 Da. Our results from melanocytes expressed in ssb/Da DNA are comparable and have the same sensitivity toward UVA as well as toward UVB as nonpigmented skin cells. As low doses of UVA have already been shown to induce detectable numbers of ssb, this assay is of great interest for further investigations about the photoprotecting and/or photosensitizing effects of melanins in human melanocytes derived from different skin types.  相似文献   

7.
Abstract— Previous studies (Biolo et al., Photochem. Photobiol. 59, 362-365, 1994) showed that liposome-delivered Si(IV)-na-phthalocyanine (SiNc) photosensitizes B16 pigmented melanoma subcutaneously transplanted in C57 mice to the action of 776 nm light. However, the efficacy of the phototreatment was limited by a lack of selectivity of tumor targeting by SiNc as well as by incomplete necrosis of the neoplastic mass. The present investigations show that the use of a different delivery system (Cremophor emulsion vs liposomes of dipalmitoylphosphatidylcholine) causes no significant increase in the selectivity of tumor targeting for three injected doses of SiNc (0.5, 1, 2 mg/kg). However, upon 776 nm light irradiation (300 mW/cm2; 520 J/cm2), the delay in the rate of tumor growth was maximal (7-8 days) for the highest naphthalocyanine dose. On the other hand, a remarkable improvement in the tumor response was obtained by inducing an intratumoral temperature increase to 44°C immediately after PDT. The thermal effect appeared to be due to photoexcitation of melanin by 776 nm light (550 mW/cm2; 520 J/cm2) and subsequent partial conversion of absorbed energy into heat.  相似文献   

8.
Abstract— To investigate the relationship between erythemal sensitivity of the skin to U V radiation and epidermal urocanic acid (UCA) concentration, 45 healthy volunteers of anamnestic skin phototypes (ASP) I-IV were studied. In 16 of the subjects, we analyzed UCA photoisomerization after graded UVB exposures. The median and mean total UCA concentration in unirradiated skin was 22.4 and 35.3 nmol/cm2, and no statistically significant difference in total UCA concentrations was detectable either between ASP I through II and III through IV or between the phototested skin type (PSP) groups 1 through 2 and 3 through 4. The relative amount of the cis -isomer varied between 3 and 35%, with median and mean values of 7 and 12%, respectively. No statistically significant difference in absolute or relative cis -UCA concentrations was detectable between ASP I through II and III through IV, but a significantly lower absolute ( P < 0.009) and relative ( P < 0.002) cis -UCA concentration in unirradiated skin was recorded in PSP groups 1 through 2, compared to types 3 through 4. In all tested subjects, an erythemally weighted dose of 1 mj/cm2sufficed to cause trans - to cis -UCA isomerization. When comparing photosensitive (skin phototype I) and phototolerant (phototypes III and IV) individuals, who were irradiated with a reference 5 mJ/cm2UV dose or with fractions of 0.1-1.0 of their individual minimal erythema dose values, no skin phototype-dependent difference in ability to photoisomerize was discernible.  相似文献   

9.
In prior studies we and others have shown that oral feeding of a polyphenolic fraction isolated from green tea (GTP) or water extract of green tea affords protection against ultraviolet B (UVB) radiation-induced carcinogenesis in SKH-1 hairless mice (Wang et al., Carcinogenesis 12, 1527–1530, 1991). It is known that exposure of murine skin to UVB radiation results in cutaneous edema, depletion of the antioxidant-defense system and induction of ornithine decarboxylase (ODC) and cyclooxygenase activities. In this study we assessed the protective effect of GTP on these UVB radiation-caused changes in murine skin. Oral feeding of 0.2% GTP (wt/vol) as the sole source of drinking water for 30 days to SKH-1 hairless mice followed by irradiation with UVB (900 mJ/cm2) resulted in significant protection against UVB radiation-caused cutaneous edema ( P <0.0005) and depletion of the antioxidant-defense system in epidermis ( P <0.01–0.02). The oral feeding of GTP also resulted in significant protection against UVB radiation-caused induction of epidermal ODC ( P <0.005–0.01) and cyclooxygenase activities ( P <0.0001) in a time-dependent manner. Our data indicate that the inhibition of UVB radiation-caused changes in these markers of tumor promotion in murine skin by GTP may be one of the possible mechanisms of chemopreventive effects associated with green tea against UVB-induced tumorigenesis. The results of this study suggest that green tea, specifically polyphenols present therein, may be useful against inflammatory responses associated with the exposure of skin to solar radiation.  相似文献   

10.
Roach ( Rutilus rutilus ) were irradiated with a single dose of ultraviolet B (UVB) radiation (0.4 J/cm2) in order to study the effects of UVB on the nonspecific immune defense mechanisms of fish. Neutrophils and macrophages were isolated from the head kidney of fish on days 1–14 postirradiation. Both random and directed migration of neutrophils, studied by migration under agarose assay, were suppressed on day 1 after UVB irradiation. The respiratory burst of phorbol 12-myristate 13-acetatestimulated neutrophils and macrophages was also suppressed at days 1 and 2 after UVB irradiation. The suppression of migration and respiratory burst were restored or the responses were even enhanced later, but on the other hand spontaneous cytotoxicity of neutrophils toward 51chromium-labeled K562 target cells stayed suppressed throughout the 14 day follow-up. This study indicates that UVB radiation has the potential to suppress the functioning of phagocytes and to compromise the immune system of fish.  相似文献   

11.
Abstract— Low-level laser irradiation has been applied in a variety of laboratory studies and clinical trials for photobiostimulation over the last three decades. Considerable skepticism exists regarding the concept of photostimulation within the medical community. One of the major difficulties with photoirradiation research is that it lacks experimentally supportable mechanisms for the alleged photobiostimulatory effects. This study was undertaken to determine whether oxidative metabolism and electron chain enzymes in rat liver mitochondria can be modulated by photoirradiation. Oxygen consumption, phosphate potential, and energy charge of rat liver mitochondria were determined following photoirradiation. Activities of mitochondrial enzymes were analyzed to assess the specific enzymes that are directly involved with the photostimulatory process. An argon-dye laser at a wavelength of 660 nm and at a power density of 10 mW/cm2 was used as a photon source. Photoirradiation significantly increased oxygen consumption (0.6 J/cm2 and 1.2 J/cm2, P < 0.05), phosphate potential, and the energy charge (1.8 J/cm2 and 2.4 J/cm2, P < 0.05) of rat liver mitochondria and enhanced the activities of NADH: ubiquinone oxidoreductase, ubiquinol: ferricytochrome C oxidoreductase and ferrocytochrome C: oxygen oxidoreductase (0.6 J/cm2, 1.2 J/cm2, 2.4 J/cm2 and 4.8 J/cm2, P < 0.05). The activities of succinate ubiquinone oxidoreductase, ATPase, and lactate dehydrogenase were not affected by photoirradiation.  相似文献   

12.
In this study we investigated the effect of the dietary ingredients fruit and vegetable, green tea phenol extract (GTP) and the specific flavonoid components quercetin and chrysin on the UV-induced suppression of the con-tact hypersensitivity (CHS) response to picryl chloride (PCl). The SKH-1 mice were fed with test diet from 2 or 4 weeks before and during the UV irradiation (daily, 95 mJ/cm2) and tested for the CHS ear-swelling response 10 weeks after the onset of the irradiation. For the CHS, mice were immunized with PCl by epicutaneous application on nonirradiated sites. Four days after sensitization all mice were challenged on both sides of each ear by topical application of one drop PCl. In addition, from mice fed with the fruit and vegetable mixture the number of Langerhans cells (LC) were scored in the skin and from mice fed with quercetin, quercetin levels in plasma were measured at week 11 after the start of UV irradiation. It was found that fruit and vegetable (19% in the diet), GTP (0.1% and 0.01% in the drinking water), quercetin (1% in the diet) and chrysin (1% and 0.1% in the diet), prevented statistically significantly the UV-induced suppression of CHS to PCl. In the skin of mice fed with fruit and vegetables combined with UV irradiation the number of LC were comparable to the control mice, whereas the number of LC were significantly diminished in mice treated with UV only. This protective effect on the presence of LC in the epidermis after UV irradiation, which was also observed in a previous study with quercetin, may play a role in the prevention of UV-induced immunosuppression by the flavonoids tested. In conclusion, we found protection of flavonoids against UV-induced effects on CHS, which may be a common feature of most flavonoids.  相似文献   

13.
Lutetium texaphyrin, PCI-0123, is a pure, water-soluble photosensitizer with a large broad absorption band centered at 732 nm. The compound was tested for photodynamic therapy (PDT) effectiveness in a murine mammary cancer model. The texaphyrin macrocycle as illustrated by magnetic resonance imaging and 14C-radiolabeled texaphyrin studies was shown to be tumor selective; a tumor-to-muscle ratio of 10.55 was seen after 5 h. Lutetium texaphyrin, at a drug dose of 20 μmol/kg with irradiation 5 h postinjection at 150 J/cm2 and 150 mW/cm2, had significant efficacy (P < 0.0001) in treating neoplasms of moderate size (40 ± 14 mm3) and also had significant efficacy ( P < 0.0001) in treating larger neoplasms (147 ± 65 mm3). The PDT efficacy was correlated with the time interval between PCI-0123 administration and light exposure. A 100% cure rate was achieved when photoirradiation took place 3 h postinjection compared to 50% for 5 h using 10 μmol/kg and 150 J/cm2 at 150 mW/cm2. The PDT efficacy was attributable to the selective uptakehetention of the texaphyrin photosensitizer in addition to the depth of light penetration achievable at the 732 nm laser irradiation.  相似文献   

14.
Abstract— For preventing or minimizing acute and chronic skin damage caused by UV radiation, the use of sunscreens is probably the most important measure. To screen the protective efficacy of new sunscreen molecules or formulations against UV rays, we evaluated as in vitro testing methods the use of two three-dimensional models, a dermal equivalent (DE) and a skin equivalent (SE). The DE is composed of a porous collagen-glycosaminoglycans-chitosan matrix populated by normal human fibroblasts. The SE is comprised of a fully differentiated epidermis realized by seeding keratinocytes onto the DE. In this study, we demonstrated that the DE and SE models react to the deleterious effects of UVA and UVB. Then, we extended our research to the evaluation of their usefulness for photoprotection trials. Sunscreen agents (Euso-lex 8020 and 6300) and commercially available sunscreens (chemical and physical filter formulations) that protect the skin against either UVA or UVB were evaluated. The tested products were applied (n = 6) topically (10 μL) and incubated for 30 min prior to irradiation over a range of UVA (0-50 J/cm2) or UVB (0-5 J/cm2). The photoprotection provided by the tested sunscreen molecules and formulations was evaluated by measurement of residual cellular viability 24 h postirradiation using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) test and assessment of the inflammation response by interleukin-la release assay. When sunscreens were applied prior to UV exposure, a higher residual cellular viability versus control was obtained, demonstrating the photoprotective effects of the tested products. These in vitro models could be used for screening tests to evaluate the protective effects of sunscreen molecules and formulations, especially for UVA trials because there is a lack of consensus for an in vivo method.  相似文献   

15.
Narrow-band UVB induces apoptosis in human keratinocytes   总被引:8,自引:0,他引:8  
Narrow-band ultraviolet (NB-UVB) phototherapy emits mostly 311/312 nm light and is commonly used in the treatment of inflammatory skin disorders. As a source of UVB irradiation, NB-UVB causes apoptosis in T lymphocytes but its effects on keratinocytes are unknown. Herein, we have investigated the ability of NB-UVB to induce apoptosis in keratinocytes. Two types of human keratinocytes, primary and immortalized, were exposed to NB-UVB and broad-band UVB (BB-UVB; 315-280 nm) and tested for apoptosis. Both UVB light sources induced apoptosis in keratinocytes as determined by the presence of DNA ladders, although NB-UVB required approximately ten fold higher doses; NB-UVB (1000 mJ/cm2) and BB-UVB (125 mJ/cm2). By comparison, lower doses of NB-UVB (750 mJ/cm2) induced apoptosis in T lymphocytes, suggesting cell type specificity for NB-UVB induced apoptosis. Approximately, 50% or more of the cells underwent apoptosis when exposed to NB-UVB or BB-UVB as revealed by TUNEL assay. Electron micrographs showed that NB-UVB irradiated keratinocytes contained marked chromatin condensation, extensive cytoplasmic vacuolization and fragmentation of the nuclear envelope. Furthermore, Western blot analysis confirmed the presence of activated products of caspase 3 in keratinocytes that received apoptotic doses of NB-UVB. This study defines conditions by which NB-UVB irradiation causes apoptosis in keratinocytes.  相似文献   

16.
Photodynamic Therapy of Human Glioma (U87) in the Nude Rat   总被引:3,自引:1,他引:3  
Abstract— We measured the response of normal brain and the human U87 glioma implanted in the brain of rats (n = 65) to photodynamic therapy (PDT) using Photofrin as the sensitizer. Normal brain and U87 tumor implanted within brain of athymic (nude) rats were subjected to PDT (12.5 mg/kg of Photofrin) at increasing optical energy doses (35 J/cm2, 140 J/cm2, 280 J/cm2) of 632 nm light. Photofrin concentration in tumor, brain adjacent to tumor and normal brain were measured in a separate population of rats. Twenty-four hours after PDT, the brains were removed, sectioned, stained with hematoxylin and eosin (H&E), and the volumes of the PDT-induced lesion measured. Photofrin concentration in tumor greatly exceeded that of normal brain and brain adjacent to tumor (>20×). Both normal brain and U87 tumor exhibited superficial tissue damage with PDT at 35 J/cm2. However, both normal and tumor-implanted brain exhibited tissue damage with increasing optical dose. A heterogeneous pattern of pannecrosis along with a uniform volume of pannecrosis was detected in the tumor. In contrast, normal brain exhibited a uniform sharply demarcated volume of necrosis. Our data indicate that the U87 human brain tumor model and the normal brain in the athymic rat are sensitive to PDT and Photofrin with an optical dose-dependent response to treatment.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is a central regulator of neoangiogenesis in inflammatory and neoplastic conditions. Ultraviolet irradiation is one of the mainstays of dermatological therapy for various inflammatory skin diseases. In the present study we have compared the effects of UV irradiation on the production of VEGF by keratinocytes (KC) and by the KC-derived cell lines A431 and HaCaT. Irradiation of A431 and HaCaT cells with both UVA (10 J/cm2 and 20 J/cm2) and UVB (8 mJ/cm2 and 16 mJ/cm2) led to strong upregulation of VEGF mRNA and protein. Induction of VEGF by UVA and UVB in these cells was mediated by different pathways, i.e. the generation of free radicals and the secretion of (a) soluble factor(s), respectively. Unlike KC-derived cell lines, no increase in VEGF production was observed in KC in primary culture after irradiation with the same UV doses. Increasing the irradiation dose in these cells of UVA to 40 J/cm2 led to a marked decrease in soluble VEGF, whereas doses as high as 32 mJ/cm2 UVB only minimally affected VEGF levels. Reduction of VEGF production by KC might contribute to the effect of UVA irradiation in inflammatory skin diseases. The differential response of primary KC and autonomously growing KC-derived cell lines to the induction of VEGF by UV light could favor neoangiogenesis in the vicinity of epidermal tumor cells in vivo, thereby endowing them with a growth advantage over normal cells.  相似文献   

18.
We have reported previously that low-dose UVB radiation (UVBR, 50-200 J/m2) perturbs the antigen-presenting cell (APC) function of murine Langerhans cells (LC) by interfering with yet undefined costimulatory signals. In this study, we investigated (1) the effects of UVBR on the expression of the costimulatory molecules B7-1 and B7-2 on murine LC, (2) the functional consequences of defective B7-1 and B7-2 signalling on primary and secondary T-cell responses induced by LC and (3) the mechanism by which UVBR interferes with B7-1 and B7-2 expression. Ultraviolet-B radiation dose-dependently inhibited the culture-induced upregulation of B7-1 and B7-2 on LC from both UVB-susceptible (UVBs, C57BL/6) and UVB-resistant (UVBR, Balb/c) mice and abrogated their capacity to stimulate proliferation of naive alloreactive T cells and of the KLH (keyhole limpet hemocyanin)-specific T helper (Th)1 clone HDK-1. The UVBR-induced suppression of B7-1 and B7-2 on LC and their perturbed APC function were related, because exogenous triggering of the B7/CD28 pathway with a stimulatory monoclonal antibody (mAb) for CD28 to UVB-irradiated LC partially restored T-cell proliferation. Such reconstitution was not observed when the mAb was added to killed LC, indicating that the UVBR-induced suppression of APC function was not due to lethal effects on LC. Conditioned supernatants from UVB-irradiated epidermal cells did not inhibit the functional upregulation of B7-1 and B7-2, suggesting that UVBR inhibits B7-1 and B7-2 upregulation by acting directly on LC and not by altering LC costimulatory function via release of soluble immunosuppressive factors. In conclusion, UVBR distorts the functional expression of B7-1 and B7-2 on LC from both UVBs and UVBR mice, thereby contributing to the failure of UVB-irradiated LC to stimulate resting alloreactive T cells or KLH-specific Thl cells.  相似文献   

19.
Abstract— The effects of photodynamic therapy (PDT) on normal brain tissue and depth of brain necrosis were evaluated in rats receiving 2.5 mg/kg aluminum phthalocyanine tetrasulfonate. Twenty-four hours later brains were irradiated with 675 nm light at a power density of 50 mW/cm2 and energy doses ranging from 1.6 to 121.5 J/cm2. Brains were removed 24 h after PDT and evaluated microscopically. When present, brain lesions consisted of well-demarcated areas of coagulation necrosis. When plotting the depth of necrosis against the natural log of energy dose, the data fit a piecewise linear model, with a changepoint at 54.6 J/cm2 and an x intercept of 7.85 J/cm2. The slopes before and after the changepoint were 2.04 and 0.21 mm/In J cm-2, respectively. The x intercept suggests a minimum light dose below which necrosis of normal brain will not occur, whereas the changepoint indicates the energy density corresponding to an approximate maximum depth of necrosis.  相似文献   

20.
Ultraviolet A radiation participates in cytotoxicity and carcinogenesis of the skin by a mechanism involving the generation of reactive oxygen species. Endogenous antiradical defense systems utilize metalloenzymes including Se-dependent glutathione peroxidase and Cu and Zn superoxide dismutase. The aim of the present work was to determine the protective effect of two trace elements, Se and Zn, on cultured human diploid fibroblasts exposed to UV-A radiation (broad-spectrum source with a maximum intensity at 375 nm). Selenium in the culture medium (0.1 mg/L) in the form of sodium selenite increased the synthesis and activity of glutathione peroxidase by 60.5% in the absence of exposure to UV-A radiation and by 35% after irradiation with 5 J/cm2 ( P = 0.043). The presence of this element significantly increased the survival of UV-A-irradiated fibroblasts ( P < 0.0001). This confirms the essential role of Se in the detoxifying activity of the enzyme. In addition, thiobarbituric acid-reacting substances (TBAR), which are lipid peroxidation markers, decreased in the presence of exogenous Se:—19% and -22% without irradiation and after irradiation with 5 J/cm2 ( P = 0.056). When Zn was added at the dose of 6.5 mg/L as ZnCl2, fibroblasts subjected to oxidizing stress induced by UV-A were protected from cytotoxicity ( P <0.0001). The TBAR production decreased significantly: -33% without irradiation and -34% after irradiation with 5 J/cm2 ( P = 0.008). Superoxide dismutase activity, however, decreased after supplementing with Zn: - 26% without irradiation and - 20% after UV-A irradiation ( P = 0.017). The antioxidant properties of Zn are thus apparently independent of superoxide dismutase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号