首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformation of carbon dioxide in aqueous emulsions of perfluorons in the presence of oxygen in the air results in the formation of a mixture of oxalic acid and a minor set of organic compounds C4–C8. The maximum CO2 consumption occurs in the emulsion with the C8F18: H2O vol/vol ratio of 1: 0.42 at pH 2.4; the H2C2O4 yield is 11 mol %.  相似文献   

2.
A new compound containing the tetraphenylphosphonium cation and the nickel(III) bisdicarbollyl anion, [(C6H5)4P][Ni(B9C2H11)2]·CCl4, was synthesized and investigated by XRD at room temperature (295 K). Crystal data: C29H42B18PCl4Ni, M = 816.69, monoclinic, space group P2/c; unit cell parameters a = 13.5873(6) Å, b = 7.1475(2) Å, c = 20.7829(8) Å, β = 94.4595(13)°, V = 2012.2(2) Å3, Z = 2, d calc = 1.348 g/cm3. The structure was solved by direct and Fourier methods and refined by the full-matrix least squares method in an anisotropic (isotropic for H) approximation to the final R 1 = 0.0466 for 3055 I hkl ≥ 2σ I of 23,655 reflections collected and 5618 independent I hkl (Bruker X8 APEX diffractometer, λMoK α).  相似文献   

3.
In this study, we observed unprecedented cleavages of the Cβ–Cγ bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M•+) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M – 116]+ ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent Cβ–Cγ bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH – 43]+ and [WGGGH – 116]+, obtained from the CID of [LGGGH]•+ and [WGGGH]•+, respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind]-2), in agreement with the CID data for [WGGGH]•+ and [W1-CH3GGGH]•+; replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from Cβ–Cγ bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the Cβ–Cγ bond and, therefore, decreases the dissociation energy barrier dramatically.  相似文献   

4.
The crystal structure of tripotassium trisaccharinate dihydrate, K3(C7H4NO3S)3·2H2O, is triclic, space group\(P \bar 1, Z = 2\). It consists of three crystallographically independent potassium and saccharinato ions as well as two structurally different water molecules. Potassium coordination polyhedra are irregular, with K1 and K3 six-coordinated and the third one K2 seven-coordinated. The K?O distances range from 2.652(9) to 3.100(2) Å(mean: 2.790 Å) whereas the K?N distance is 3.025(3) Å. The water molecules W2 is disordered over three positions with occupancies of approximately 0.6, 0.2 and 0.2. The hydrogen atom (H1W1) of the ordered water molecule (O1W) is hydrogen bonded to the sulfonyl oxygen atom (O11) (R(O...O)=2.976(3) Å), whereas the other hydrogen atom (H2W1) is bifurcated to the carbonyl oxygen atom (O13) (R(O...O)=2.851(3) Å) and the disordered water molecules (O23W) (R(O...O)=3.067(12) Å). The carbonyl oxygens (O13, O23 and O33) and one of the disordered water molecules (O22W) are involved in C?H...O hydrogen bonds (R(C?H...O)=3.027(4)–3.304(9) Å). Structural characteristics of the studied compound are compared with the analogous trisodium trisaccharinate dihydrate and dipotassium sodium trisaccharinate monohydrate. Infrared and Raman spectra of the title compound have been analyzed in relation to the structure, and compared with the spectra of trisodium trisaccharinate dihydrate.  相似文献   

5.
A σ-hole is defined as an electron-deficient region on the extension of a covalently bonded group IV–VII atoms. If the electronic density in the σ-hole is sufficiently low, then this region will have a positive electrostatic potential, which allows attractive noncovalent interactions with negative sites. SO2X2 and SeO2X2 (X = F, Cl and Br) have three Lewis acid sites of σ-hole located in the outermost of chalcogen atom and X end, participating in the chalcogen and halogen bonds with NH3 and H2O, respectively. MP2/aug-cc-pVTZ and M06-2X/aug-cc-pVTZ calculations reveal that for a given halogen atom, SeO2X2 forms stronger chalcogen bond interactions than SO2X2 counterpart. Almost a perfect linear relationship is evident between the interaction energies and the magnitudes of the product of most positive and negative electrostatic potentials. The interaction energies calculated by M06-2X and MP2 methods are almost consistent with each other.  相似文献   

6.
The temperature dependence of the 35Cl NQR frequencies and spin-lattice relaxation times has been investigated for a trigonal-bipyramidal vn complex SbCl3·NH2C6H5. Thermally activated motion of chlorine atoms (pseudorotation) was not revealed in the complex, in contrast to the vπ complexes of SbCl3 with related molecular structures. The high potential barrier of pseudorotation in the aniline complex is likely to be due to the unusually high nonequivalence of Sb-Cl chemical bonds.  相似文献   

7.
Synthesis of C6–C7 alicyclic diols was studied by a catalytic oxidation of cyclohexene, norbornene and their methyl derivatives in the presence of heterogenized molybdenum-containing catalysts. By a triple condensation of the diols with formaldehyde and secondary amines a synthesis of their aminomethylated derivatives with various substituents at nitrogen atom was examined. Antimicrobial properties of the synthesized amino alcohols in M-10 oil as additives with fungicidal and bactericidal activities were studied.  相似文献   

8.
The single crystals of Rb2[(UO2)2(C2O4)2(SeO4)] · 1.33H2O were synthesized and studied by X-ray diffraction. The crystals are monoclinic, space group P21/m, Z= 2, the unit cell parameters: a = 5.6537(8), b = 18.736(3), c = 9.4535(15) Å, β = 98.440(5)°, V = 990.6(3) Å3, R 1 = 0.0506. The main structural units of the crystal are infinite layers of [(UO2)2(C2O4)2(SeO4)]2?, corresponding to the crystal chemical group A2K 2 02 B2 (A = UO 2 2+ , K02 = C2O 4 2? , B2 = SeO 4 2? ) of uranyl complexes. The uranium-containing layers are united into a three-dimensional framework through the electrostatic interactions with the outer-sphere rubidium ions and the hydrogen bonding system involving the outer-sphere water molecules.  相似文献   

9.
The crystal structure of a double complex salt of the composition [Au(en)2]2[Cu(C2O4)2]3·8H2O (en = ethylenediamine) at 150 K is determined by single crystal X-ray diffraction. The crystal data for C20H48Au2Cu3N8O32 are: a = 9.1761(3) Å, b = 16.9749(6) Å, c = 13.4475(5) Å, β = 104.333(1)°, V = 2029.43(12) Å3, P21/c space group, Z = 2, d x = 2.450 g/cm3. It is demonstrated that the thermal decomposition of the double complex salt in a helium or hydrogen atmosphere affords the solid solution Au0.4Cu0.6.  相似文献   

10.
Single crystals of Ba3[UO2(C2O4)2(NCS)]2 · 9H2O are synthesized and studied by X-ray diffraction. The crystals are orthorhombic, space group Fddd, Z = 16, and the unit cell parameters are a = 16.253(3) Å, b = 22.245(3) Å, c = 39.031(6) Å. The main crystal structural units are mononuclear complex groups [UO2(C2O4)2NCS]3? of the crystal-chemical family (AB 2 01 M1 (A = UO 2 2+ , B01 = C2O 4 2? , M1 = NCS?) of the uranyl complexes linked into a three-dimensional framework by electrostatic interactions and hydrogen bonds involving oxalate ions and water molecules.  相似文献   

11.
Single crystals of Cs[(UO2)2(C2O4)2(OH)] · H2O were synthesized and structurally studied using X-ray diffraction. The compound crystallizes in monoclinic space group P21/m, Z = 2, with the unit cell parameters a = 5.5032(4) Å, b = 13.5577(8) Å, c = 9.5859(8) Å, β = 97.012(3)°, V = 709.86(9) Å3, R = 0.0444. The main building units of crystals are [(UO2)2(C2O4)2(OH)]? layers of the A2K 2 02 M2 (A = UO 2 2+ , K02 = C2O 4 2? , and M2 = OH?) crystal-chemical family. Uranium-containing layers are linked into a three-dimensional framework via electrostatic interactions with outer-sphere cations and hydrogen bonds with water molecules.  相似文献   

12.
Synthesis and X-ray diffraction study of [UO2CrO4(C5NH5COO)] · H2O crystals were performed. The compound crystallizes in the monoclinic system with the unit cell parameters a = 7.5025(3) Å, b = 11.5188(6) Å, c = 13.0518(6) Å, β = 97.877(4)°, V = 1117.29(9) Å3, space group P21/n, Z = 4, R = 0.0263. The structure is formed by three [UO2CrO4(C5NH5COO)] layers parallel to (10\(\bar 1\)). The coordination polyhedron of uranium atoms is a pentagonal bipyramid, whose apices are occupied by oxygen atoms of uranyl, three chromate groups, and two molecules of isonicotinic acid. Crystal chemical formula of the [UO2CrO4(C5NH5COO)] layer can be represented as AT3B2, where A = UO 2 2+ , T3 = CrO 4 2? , and B2 = C5NH5COO molecules. The isonicotinic acid molecules are in the form of zwitterions.  相似文献   

13.
The influence of pressure on the oxidative cracking of light alkanes C2—C4 was investigated. An elevated pressure reduces the temperature of oxycracking of light alkanes but with further increase in pressure the effect is reduced. The applied pressure decreases the temperature of the total conversion of oxygen while the maximum conversion of alkanes is not influenced. The pressure above atmospheric promotes oxidative cracking reactions but weakly affects thermal processes. At deep conversion of light alkanes, the selectivity towards main products is nearly invariable at the utilized pressures.  相似文献   

14.
Single crystal X-ray diffraction study of glycine phosphite C2H5NO2·H3PO3 was performed (monoclinic, space group P21/c, a = 7.401(3) Å, b = 8.465(3) Å, c = 9.737(3) Å; β = 100.73(5)°, Z = 4). It has been found that one of hydrogen atoms is located at the centre of symmetry forming two strong hydrogen bonds to yield H4P2O 6 ?2 dimers, while another hydrogen atom is statistically disordered over two positions and organizes the dimers into an infinite corrugated chain. The ordering of this hydrogen atom position and/or displacement of the other one from the centre of symmetry will lead to the loss of symmetry centre and lowering of the point group symmetry from C2h to piezo-active group C2 or C s .  相似文献   

15.
The title compound, cobalt 4′,7-diethoxylisoflavone-3′-sulfonate([Co(H2O)6](X)2⋅8H2O, X = C19H17O4SO3) was synthesized and its structure was determined by single-crystal X-ray diffraction analysis. It crystallizes in the triclinic space group P-1 with cell parameters a = 9.026(3) Å, b = 16.431(5) Å, c = 18.195(6) Å, α = 72.289(4), β = 87.498(4), γ = 82.775(5), V = 2550.1(13) Å−3, Dc = 1.419 Mg m−3, and Z = 2. The results show that the title compound consists of one cobalt cation, six coordinated water molecules, eight lattice water molecules, and two 4′,7-diethoxylisoflavone-3′-sulfonate anions, C19H17O4SO3. Two anions have different conformations. Twelve H atoms of six coordinated water molecules, as donors, form hydrogen bonds with four oxygen atoms of sulfo-groups of two anions and eight oxygen atoms of eight lattice water molecules. In addition, π < eqid1 > ⋅ < eqid2 > π stacking interactions exist in the crystal structure, which together with hydrogen bonds lead to supramolecular formation with a three-dimensional network.  相似文献   

16.
A novel binuclear Cobalt(II) complex with N-(2-propionic acid)-salicyloyl hydrazone (C10H10N2O4, H3L) was prepared and characterized. The crystal structure of [Co(C10H9N2O4)2] · 3H2O was determined by X-ray single-crystal diffractometry. The Co2+ ion is six-coordinated by the carboxyl and acyl O atoms and azomethine N atoms of two tridentate N-(2-propionicacid)-salicyloyl hydrazone ligands, which form two stable five-numbered rings sharing one side in the keto form. The coordination environment around the Co2+ ion might be described as a distorted octahedron. Abundant hydrogen bonds of the types O-H…N and O-H…O between the water molecules and ligands not only form the three-dimensional network, but also provide an extrastability for the crystal. The complex was studied for the interaction with calf thymus DNA by electronic absorption titration and emission titration. The results show that the complex is bound to calf thymus DNA mainly by intercalation. The article is published in the original.  相似文献   

17.
Single crystals of the Na4[Na2Cr2(C2O4)6] · 10H2O complex were synthesized for the first time. The structure of the complex was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic crystal system with the unit cell parameters a = 17.290(4) Å, b = 12.521(3) Å, c = 15.149(3) Å, β = 100.45(3)°, Z = 4, space group Cc. Anionic layers [NaCr(C2O4)3] 2n 4n? can be distinguished in the crystal structure of the complex. The Na+ cations and water molecules, involved in the formation of a hydrogen bond network, are located between the anionic layers.  相似文献   

18.
The clathrate [Zn(C6H5COO)2(H2O)2] · 2CH3COOH (I) was obtained for the first time from zinc(II) benzoate. The individuality, the unit cell parameters, and the number of “guest” molecules in complex I were determined from X-ray diffraction and derivatographic data. Its crystal structure was solved.  相似文献   

19.
Thermodynamic cycles including the increments \(\Delta G_{CH_2 }^0 , \Delta H_{CH_2 }^0 \), and \(T\Delta S_{CH_2 }^0 \) were constructed for dissolution, evaporation, hydrophobic hydration of C5–C9 hydrocarbons, and transfer from vapor (\(\Delta G_{CH_2 }^0 \) = ?0.7 kJ·mol?1, \(\Delta H_{CH_2 }^0 \) = 2.9 kJ·mol?1, \(T\Delta S_{CH_2 }^0 \) = 3.6 kJ·mol?1) and water (\(\Delta G_{CH_2 }^0 \) = ?1.4 kJ·mol?1, \(\Delta H_{CH_2 }^0 \) = 5.8 kJ·mol?1, \(T\Delta S_{CH_2 }^0 \) = 7.2 kJ·mol?1) to micelles of C12–C18 hydrocarbons. The formation of bistable hydrated micelles of C12–C18 is explained by a transition between the order-disorder states in an assembly of small (nano) systems of water. The extensive parameters of small systems and critical phenomena predicted by fluctuation theory are discussed.  相似文献   

20.
Based on the experimentally determined values and published data, the enthalpies of formation of nitroalkanes C4–C7 in the standard state and in the gas phase were recommended. The dissociation energies of bonds in these compounds were determined taking into account the enthalpies of atomization and the energies of nonvalent interactions of nitro groups with one another. The calculated values were compared with the available thermal decomposition kinetic data. The dissociation energies of bonds in C4–C7 nitroalkane radicals were also calculated using the enthalpies of atomization and the energies of nonvalent interactions of nitro groups. Regularities of changes in the bond dissociation energies of nitroalkanes C1–C7 and their radicals are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号