首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
Gas compressibility factor (z-Factor) is one of the most important parameters in upstream and downstream calculations of petroleum industries. The importance of z-Factor cannot be overemphasized in oil and gas engineering calculations. The experimental measurements, Equations of State (EoS) and empirical correlations are the most common sources of z-Factor calculations. There are more than twenty correlations available with two variables for calculating the z-Factor from fitting in an EoS or just through fitting techniques. However, these correlations are too complex, which require initial value and more complicated and longer computations or have magnitude error. The purpose of this study is to develop a new accurate correlation to rapidly estimate z-Factor. Result of this correlation is compared with large scale of database and experimental data also. Proposed correlation has 1.660 of Absolute Percent Relative Error (E_(ABS)) versus Standing and Katz chart and has also 3.221 of E_(ABS) versus experimental data. The output of this correlation can be directly assumed or be used as an initial value of other implicit correlations. This correlation is valid for gas coefficient of isothermal compressibility (c_g) calculations also.  相似文献   

2.
In this study, comparative analyses were carried out with ion chromatography mass-spectrometry (IC-MS/MS) which has no derivatization step, high-performance liquid chromatography (HPLC) technique, as well as two quantitative and two semi-quantitative immunoassays. The results demonstrated that HPLC and quantitative immunoassay methods were well-correlated with IC-MS/MS in determining histamine in various types of fish products. The best correlation was observed with the HistaSure ELISA Fast Track kit (R2 = 0.9903). More than half of the values (68%) obtained by two methods were also statistically similar. The results of semi-quantitative test kits also supported histamine values estimated by quantitative methods, with some exceptions. The best results were found for HistaSure Lateral Flow in supporting the quantitative techniques. Therefore, these methods are found suitable for monitoring histamine in fish products in terms of food safety. Good correlations were also observed HPLC and IC-MS/MS in determining cadaverine, putrescine, and tyramine with the highest value observed for tyramine as R2 = 0.9785. However, no correlation was observed for other biogenic amines, and the majority of the results were significantly different from each other for these amines (p < 0.05). The differences may be caused by the drawbacks reported previously for HPLC. However, further studies are required to confirm the possible effects. This study provides a comparative evaluation of several methods in terms of their suitability in determining biogenic amines in fish products for both monitoring and regulatory purposes.  相似文献   

3.
A new two-dimensional graphical representation of protein sequences is introduced. Twenty concentric evenly spaced circles divided by n radial lines into equal divisions are selected to represent any protein sequence of length n. Each circle represents one of the different 20 amino acids, and each radial line represents a single amino acid of the protein sequence. An efficient numerical method based on the graph is proposed to measure the similarity between two protein sequences. To prove the accuracy of our approach, the method is applied to NADH dehydrogenase subunit 5 (ND5) proteins of nine different species and 24 transferrin sequences from vertebrates. High values of correlation coefficient between our results and the results of ClustalW are obtained (approximately perfect correlations). These values are higher than the values obtained in many other related works.  相似文献   

4.
Two novel correlations are introduced to predict decomposition temperatures of imidazolium‐based energetic ionic liquids. The first simple model is based only on the number of some of atoms in cationic and anionic structures. Meanwhile, a suitable correction term was added in the second correlation to adjust the predicted results for the presence of some specific cation/anion moieties. The measured data of 164 different types of imidazolium‐based energetic ionic liquids were used to derive the new correlations. The calculated mean absolute percent errors (MAPEs) of the first and second models are 6 and 4, respectively. The predicted results have confirmed that insertion of correcting function in the second correlation can provide better estimations. These models were also tested and compared with one of the best available group contribution methods, where group contribution method can be applied, for 17 further imidazolium‐based energetic ionic liquids containing complex molecular structures. Furthermore, the predicted values of MAPEs of the new models are close to that of obtained by group contribution method.  相似文献   

5.
A systematic all electron post Hartree-Fock as well as density functional theory (DFT) based calculations for the polarizability and binding energy of sodium metal clusters have been performed and an in-depth analysis of the discrepancy between the experimental and theoretical results is presented. A systematic investigation for the assessment of different DFT exchange-correlation functionals in predicting the polarizability values has also been reported. All the pure DFT functionals have been found to considerably underestimate the calculated polarizability values as compared to the MP2 results. DFT calculations using the full Hartree-Fock exchange along with one-parameter progressive correlation functional have, however, been shown to yield results in good agreement with the MP2 and experimental results. The possible sources of error present in the experimental measurements as well as in the different theoretical methods have also been analyzed. One of the most important conclusions of the present study is that the effect of electron correlation plays a significant role in determining the polarizability of the clusters and the MP2 method can be considered to be one of the most reliable methods for their prediction. It has also been noted that the polarizability value of the lower member clusters (Na2 and Na4) calculated by highly sophisticated methods such as, CCSD and CCSD(T) are found to be very close to the corresponding MP2 values. The polarizability and the binding energy of the clusters are found to be inversely related to each other and their correlation is rationalized by invoking the minimum polarizability principle. A good linear correlation between the polarizability and volume of the cluster has also been found to exist.  相似文献   

6.
Ab initio methods were used to analyze the structure, energetic and binding energy of the five began dipeptides with methionine, Met-Gly, Met-Ala, Met-Ser, Met-Cys, and Met-Thr dipeptides, in gas phase. The structures of the dipetides and involved amino acids in them were optimized by using Hartree-Fock and DFT methods and 3-21G(d), 6-31G(d), 6-311G, 6-311G(d), and 6-311+G(d) basis sets. The effect of basis sets and electron correlations were analyzed with special emphasis on the calculated binding energies and thermodynamic functions. All used methods revealed that Met-Thr has the highest binding energy among all of the five dipeptide molecules. These numerical results suggest that Thr donates the proton easier than other four amino acids and it has the most tendency to join with methionine and it forms the most strong bond with methionine. This fact may be the reason behind the obtained high binding energies for Met-Thr at all levels. From comparison of the values of binding energy for dipeptides in different levels of theory, we could identify that the order of tendency for joint with methionine is Thr > Gly > Ala > Cys > Ser. Also, these data represented that the highest binding energy provide in HF/6-311G level for all of the dipeptides (14.4202, 11.2387, 8.3267, 9.8853, 17.3362 kcal mol−1 for dipeptides 1–5, respectively). Moreover, natural bond orbital (NBO) analysis demonstrated that the effect of basis sets and electron correlations on σN1-C2 bonding orbital occupancy is the same as the basis set and electron correlation effects on binding energy of dipeptides in all cases. The obtained results from studying the effect of basis sets and electron correlations on binding energy, NMR and NBO properties showed that the effect of basis sets is almost independent of molecular structure and computational method, while electron correlation effects are relatively dependent to molecular structure and basis set type. In investigating the effect of basis sets and electron correlations on binding properties, the NBO results are in good agreement with the energetic and thermochemistry data at all levels of calculations. The article is published in the original.  相似文献   

7.
The goals of this articles are to find a correlation between the required HLB values and the solubility parameters of oils; find a more precise correlation between the required HLB values and the dielectric constant, than the one obtained by other authors; and to determine the required HLB values for o/w emulsions of solid fatty acids and alcohols from the values of the solubility parameters and dielectric constants, that could be more trustful than the ones obtained by the methodology proposed by Griffin. It was obtained lineal relation between required HLB and solubility parameter (r = 0.995). Also it was observed lineal relations between required HLB and dielectric constants or logarithm of the dielectric constant more precise than the one obtained by other authors.  相似文献   

8.
9.
The sensitivity of an energetic compound gives its vulnerability to accidental detonation, which is caused by an unintended stimulus. Shock and electric spark sensitivities of energetic compounds are two important sensitivity parameters for assessment of their safety in working places. Several correlations are introduced for reliable prediction of shock sensitivities of energetic compounds at 90, 95, and 98 % of theoretical maximum density (TMD) according to NSWC using Navy small‐scale gap test through their electric spark sensitivities. For 11 explosives, where experimental data of both shock and electric spark sensitivities were available, the predicted results at 90 % of TMD are compared with the quantum mechanical approach. The root‐mean‐square (rms) deviations of the new and complex quantum mechanical methods at 90 % TMD are 2.38 and 3.95 kbar, respectively, which confirmed the high reliability of the new method. For high explosives with 90, 95, and 98 % TMD, it will be shown that the predicted results of the new method are also much more reliable than one of the best available empirical approaches. A correlation between shock sensitivities on the basis of aluminum gaps with different thicknesses and the pressure required to initiate material pressed to 90 % TMD is also derived.  相似文献   

10.
《Fluid Phase Equilibria》1999,166(2):163-181
The recently developed saturated liquid density correlation of Iglesias-Silva and Hall for halogenated paraffins is extended to other classes of compounds involving paraffins, cycloparaffins, olefins, diolefins, cyclic-olefins, aromatics, alcohols, ethers, liquefied inorganic gases, and others. The two adjustable parameters of the correlation are optimized and reported for 126 compounds. The average error for 5377 experimental data points was 0.27%. The correlation is extended to multicomponent mixtures. A set of mixing rules is proposed. The correlation with this set of mixing rules is used to predict the saturated liquid density of 86 multicomponent systems consisting of LNG, heavy hydrocarbons, CO2, H2S, alcohols and halogenated paraffins. The average of error for 1378 experimental data points was 1.03% with 0 bias with respect to experimental data. These values compare well with the values from well-known correlations. For polar compounds or multicomponent systems containing polar compounds, the computation of saturated liquid density by this correlation shows superiority with respect to the other correlations.  相似文献   

11.
During the terminal heat sterilization of the lipid emulsion final dose formulation of the photodynamic therapeutic (PDT) agent tin ethyl etiopurpurin (SnET2), a new degradant was observed at very low levels. The degradant, which was prone to photo‐instability, was isolated by preparative chromatography and subsequently characterized by mass spectrometry and NMR methods. Reproducible parent ion clusters were only observable via negative ion APCI methods. Because of the limited isolate sample, NMR characterization was done using 1.7 mm SMIDG (SubMicro Inverse‐Detection Gradient) NMR probe technology in conjunction with the accordion‐optimized IMPEACH‐MBC long‐range heteronuclear shift correlation experiment. The “static” 8 Hz optimization of the GHMBC experiment failed to allow the observation of a number of long‐range correlations that were of critical importance to the determination of the structure of the impurity. In contrast, all of the correlations required to assemble the structure were obtained from an IMPEACH‐MBC experiment optimized for long‐range heteronuclear couplings in the range from 2–10 Hz.  相似文献   

12.
In the drug discovery process, accurate methods of computing the affinity of small molecules with a biological target are strongly needed. This is particularly true for molecular docking and virtual screening methods, which use approximated scoring functions and struggle in estimating binding energies in correlation with experimental values. Among the various methods, MM‐PBSA and MM‐GBSA are emerging as useful and effective approaches. Although these methods are typically applied to large collections of equilibrated structures of protein‐ligand complexes sampled during molecular dynamics in water, the possibility to reliably estimate ligand affinity using a single energy‐minimized structure and implicit solvation models has not been explored in sufficient detail. Herein, we thoroughly investigate this hypothesis by comparing different methods for the generation of protein‐ligand complexes and diverse methods for free energy prediction for their ability to correlate with experimental values. The methods were tested on a series of structurally diverse inhibitors of Plasmodium falciparum DHFR with known binding mode and measured affinities. The results showed that correlations between MM‐PBSA or MM‐GBSA binding free energies with experimental affinities were in most cases excellent. Importantly, we found that correlations obtained with the use of a single protein‐ligand minimized structure and with implicit solvation models were similar to those obtained after averaging over multiple MD snapshots with explicit water molecules, with consequent save of computing time without loss of accuracy. When applied to a virtual screening experiment, such an approach proved to discriminate between true binders and decoy molecules and yielded significantly better enrichment curves. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
Cellulose crystallinity assessment is important for optimizing the yield of cellulose products, such as bioethanol. X-ray diffraction is often used for this purpose for its perceived robustness and availability. In this work, the five most common analysis methods (the Segal peak height method and those based on peak fitting and/or amorphous standards) are critically reviewed and compared to two-dimensional Rietveld refinement. A larger (\(n=16\)) and more varied collection of samples than previous studies have presented is used. In particular, samples (\(n=6\)) with low crystallinity and small crystallite sizes are included. A good linear correlation (\(r^{2} \ge 0.90\)) between the five most common methods suggests that they agree on large-scale crystallinity differences between samples. For small crystallinity differences, however, correlation was not seen for samples that were from distinct sample sets. The least-squares fitting using an amorphous standard shows the smallest crystallite size dependence and this method combined with perpendicular transmission geometry also yielded values closest to independently obtained cellulose crystallinity values. On the other hand, these values are too low according to the Rietveld refinement. All analysis methods have weaknesses that should be considered when assessing differences in sample crystallinity.  相似文献   

14.
In this study, we show that the addition of n-octanol to the mobile phase improves the chromatographic determination of lipophilicity parameters of xenobiotics (neutral solutes, acidic, neutral and basic drugs) on a Phenomenex Gemini C18 column. The Gemini C18 column is a new generation hybrid silica-based column with an extended pH range capability. The wide pH range (2-12) afforded the examination of basic drugs and acidic drugs in their neutral form. Extrapolated retention factor values, [Formula: see text] , obtained on the above column with the n-octanol-modified mobile phase were very well correlated (1:1 correlation) with literature values of logP (logarithm of the partition coefficient in n-octanol/water) of neutral compounds and neutral drugs (69). In addition, we found good linear correlations between measured [Formula: see text] values and calculated values of the logarithm of the distribution coefficient at pH 7.0 (logD(7.0)) for ionized acidic and basic drugs (r(2)=0.95). The Gemini C18 phase was characterized using the linear solvation energy relationship (LSER) model of Abraham. The LSER system constants for the column were compared to the LSER constants of n-octanol/water extraction system using the Tanaka radar plots. The comparison shows that the two methods are nearly equivalent.  相似文献   

15.
On-line coupling of ion chromatography and atomic spectrometry (IC-ICP-(AES, MS)) are compared to so-called reference methods and other competing methods for ultra trace characterization of solid microelectronic materials. The comparison is based on analytical data gained for well characterized samples by a number of different laboratories. The matrices used for comparison are Mo, Mo-oxide, MoSix, W, W-oxide, WSix, metallic As, red P and Re. The analyte elements accessible by IC-ICP-(AES, MS) and with reference values for at least one other method are Ag, Al, Ba, Ca, Cd, Cr, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Ti, Tl, Th, U and Zn. The agreement of results of IC-ICP-(AES, MS) with those of isotope dilution mass spectrometry (IDMS) and radiochemical activation analyses (RNAA) shows good accuracy for most elements and some contamination problems with ubiquitous elements. A correlation of IC-ICP-(AES, MS) and GDMS results is undoubtful, but the discrepancies are rather high. As further technique ETV-ICP-MS is compared, whose results are in reasonable agreement with IC-ICP-(AES, MS). Details on some new applications as well as of some new methodological enhancements of on-line coupling IC-ICP(AES, MS) for the matrices As and P were included.  相似文献   

16.
以连钱草的毛细管电泳指纹图谱为输入数据,以总黄酮和三萜酸类成分含量为输出数据,构建了反向传播网络、径向基函数网络和广义回归网络三种人工神经网络模型.采用三种网络模型和两种预测方法对未知样本的总黄酮和三萜酸类成分含量进行了预测,并分别比较了三种网络和两种预测方法的预测结果.另外,结合聚类分析结果和输入数据的相似度,分析了预测误差的来源.结果表明:三种网络对大部分样本的预测值与实际值都比较接近,而广义回归网络的预测效果最优;扣除奇异值后,广义回归网络的两种预测方法对未知样本的总黄酮和三萜酸类成分含量的平均预测误差分别为10.9%和0.00073%.  相似文献   

17.
A better understanding of the structure of complex 3H-labeled molecules can be obtained by complete assignment of their 1H and 3H solution-state NMR spectra. The assignment process is aided by the detection of heteronuclear chemical shift correlations between 1H and 3H nuclei. Heteronuclear correlation (HETCOR) experiments previously applied to this task exhibit several drawbacks caused by the nature of both the pulse sequences and 1H-3H spin systems. The range of J-couplings involved in 1H-3H coupling networks make it challenging to perform correlation experiments using methods that rely on coherences created during free precession periods and interrupted by transfer pulses. Two alternative HETCOR experiments are demonstrated for 1H-3H systems in the present work and are shown to have advantages over earlier methods. The first experiment is known as hetero-TOCSY and correlates heteronuclear chemical shifts using J-cross polarization. This experiment achieves both homonuclear and heteronuclear mixing and connects the chemical shifts of all 1H and 3H nuclei in a coupling network. A second HETCOR experiment uses the heteronuclear Overhauser effect to obtain through-space correlations between nearby nuclei. The 1H-3H HETCOR experiments are phase sensitive and typically contain more correlations than other methods, which is beneficial for assignment purposes, while being sensitive enough to be applicable to routine analytical samples. The experiments were used to analyze 3H incorporation in sub-milligram quantities of 3H-labeled pharmaceutical derivatives with complex labeling schemes.  相似文献   

18.
19.
Stability of water-in-paraffinic oil (w/o) emulsions has been studied using turbidity measurements of diluted systems at 400 and 800 nm. The method has been found most suitable for detennination of the required HLB, amount and type of emulsifier, and the inner water phase fraction. The technique has been compared to other known methods and a good correlation was obtained.  相似文献   

20.
Octanol-water partition coefficients (Kow) for 57 terpenoids were measured using a RP-HPLC method. Sample detection was achieved with standard UV and refractive index detectors and required no special column treatment. Measured log Kow values for the terpenoids ranged from 1.81 to 4.48 with a standard error of between 0.03 and 0.08 over the entire range. Partition coefficients determined by the RP-HPLC method were compared against shake flask, atom/fragment contribution, fragment and atomistic methods. The HPLC values were found to give the best correlation with shake flask results. Log Kow values calculated by the atom/fragment contribution method gave the best correlation with the HPLC values when compared to fragment and atomistic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号