首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We present the results of our theoretical calculations on structural and electronic properties of ligand-free Zn(n)S(n) [with n ranging from 4 to 104 (0.8-2.0-nm diameter)] clusters as a function of size of the clusters. We have optimized the structure whereby our initial structures are spherical parts of either zinc-blende or wurtzite structure. We have also considered some hollow bubblelike structures. The calculations are performed by using a parametrized linear combination of atomic orbitals-density-functional theory-local-density approximation-tight-binding method. We have focused on the variation of radial distribution function, Mulliken populations, electronic energy levels, band gap, and stability as a function of size for both zinc-blende and wurtzite-derived ZnS clusters. We have also reported the results of some nonstoichiometric Zn(m)S(n) (with m+n=47, 99, 177) clusters of zinc-blende modification.  相似文献   

2.
The relative stability of Sc, Ti, and V encapsulating Ge(n) clusters in the size range n = 14-20 has been studied through first-principles electronic structure calculations based on density functional theory. Variations of the embedding energy, gap between the highest occupied and the lowest occupied molecular orbitals, ionization potential, vertical detachment energy, and electron affinity with cluster size have been calculated to identify clusters with enhanced stability. The enhanced stability of some clusters can be very well explained as due to the formation of a filled shell free-electron gas inside the Ge cages. For the first time, direct evidence of the formation of a free-electron gas is also presented. In some other clusters, enhanced stability is found to originate from geometric effects. Some clusters that may be expected to have enhanced stability from simple electron counting rules do not show that. These results provide new insights into the long-standing question of whether electron counting rules can explain the relative stability of transition metal encapsulated semiconductor clusters and show that these clusters are too complex for such simple generalizations.  相似文献   

3.
Ammonia clusters (NH3)n (n=2-10(4)) have been assembled inside helium droplets and studied via infrared laser spectroscopy. The studied spectral range of 3100-3500 cm(-1) covers the nu1 and nu3 fundamental stretching bands as well as the 2nu4 overtone of the bend of ammonia molecules. The results show strong coupling of the 2nu4 overtone with the fundamental vibrations for all cluster sizes except dimers. The intensity of the nu3 band relative to the total intensity in the spectrum increases from about 30% to about 80% upon increase of the average cluster size from n=5 to n=10(4). We attributed this effect to the concomitant decrease in the fraction of the surface molecules. The results indicate that ammonia clusters obtained in He droplets have a compact structure and that inner molecules in the clusters have similar hydrogen-bonded coordination as in the crystalline form of ammonia. This surprising result is ascribed to a directionality of the hydrogen bond, which guides the low temperature growth of the cluster in He droplets.  相似文献   

4.
Size-dependent features of the electron localization in negatively charged formamide clusters (FAn-, n = 5-21) have been studied by photodetachment spectroscopy. In the photoelectron spectra for all the sizes studied, two types of bands due to different isomers of anions were found. The low binding energy band peaking around 1 eV is assigned to the solvated electron state by relative photodetachment cross-section measurements in the near-infrared region. It is suggested that nascent electron trapping is dominated by formation of the solvated electron. The higher energy band originates from the covalent anion state generated after a significant relaxation process, which exhibits a rapid increase of electron binding energy as a function of the cluster size. A unique behavior showing a remarkable band intensity of the higher energy band was found only for n = 9.  相似文献   

5.
Infrared spectroscopy of large-sized protonated methanol clusters, H(+)(MeOH)(n) (n = 4-15), was carried out in the OH stretch region to characterize the development of the hydrogen bond network with the cluster size, n. The band intensity of the free OH stretching mode decreased with n, and the band finally disappeared at n = 7. On the other hand, the broad absorption band due to hydrogen-bonded OH stretches exhibited a remarkable shift with the cluster size, and it finally converged on 3300 cm(-1) for n >/= approximately 10. The size dependence of the infrared spectra was morphologically interpreted in terms of the formation of the bicyclic hydrogen-bonded structure of the clusters.  相似文献   

6.
We examine the utility of photoelectron spectroscopy (PES) as a structural probe of Si(n) (-) in the n=20-26 size range by determining isomers and associated photoelectron spectra from first principles calculations. Across the entire size range, we consistently obtain a good agreement between the theory and experiment [Hoffmann et al., Eur. Phys. J. D 16, 9 (2001)]. We find that PES can almost invariably distinguish between structurally distinct isomers at a given cluster size, but that structurally similar isomers usually cannot be reliably distinguished by PES. For many, but not all, sizes the isomer giving the best match to experiment is the lowest-energy one found theoretically. Thus, combining theory with PES experiments emerges as a useful source of structural information even for intermediate size clusters.  相似文献   

7.
Infrared photodissociation spectroscopy is reported for mass-selected Ni+ (H2O)n complexes in the O-H stretching region up to cluster sizes of n = 25. These clusters fragment by the loss of one or more intact water molecules, and their excitation spectra show distinct bands in the region of the symmetric and asymmetric stretches of water. The first evidence for hydrogen bonding, indicated by a broad band strongly red-shifted from the free OH region, appears at the cluster size of n = 4. At larger cluster sizes, additional red-shifted structure evolves over a broader wavelength range in the hydrogen-bonding region. In the free OH region, the symmetric stretch gradually diminishes in intensity, while the asymmetric stretch develops into a closely spaced doublet near 3700 cm(-1). The data indicate that essentially all of the water molecules are in a hydrogen-bonded network by the size of n = 10. However, there is no evidence for the formation of clathrate structures seen recently via IR spectroscopy of protonated water clusters.  相似文献   

8.
We have measured the vibrational spectra of large ammonia (NH3)n clusters by photofragment spectroscopy in the spectral range from 3150 to 3450 cm(-1) for the average sizes n = 29, 80, 212, 447, and 989 and by depletion spectroscopy for n=8. The spectra are dominated by peaks around 3385 cm(-1) which are attributed to the asymmetric nu3 NH-stretch mode. Two further peaks between 3200 and 3260 cm(-1) have about equal intensity for n = 8 and 29, but only about 0.40 of the intensity of the nu3 peak for the larger sizes. The spectra for the smallest and largest size agree with those obtained by Fourier transform infrared spectroscopy in slit jet expansion and collision cells, respectively. By accompanying calculation we demonstrate that the energetic order of the spectral features originating from the bending overtone 2nu4 and the symmetric NH-stretch nu1 in the range from 3150 to 3450 cm(-1) is changed between n = 10 and 100, while the asymmetric NH-stretch nu3 only exhibits a moderate redshift. The reason is the coupling of the ground state modes to the overtones.  相似文献   

9.
Vibrational predissociation spectra are reported for size-selected NH4+ (H2O)n clusters (n=5-22) in the 2500-3900 cm(-1) region. We concentrate on the sharp free OH stretching bands to deduce the local H-bonding configurations of water molecules on the cluster surface. As in the spectra of the protonated water clusters, the free OH bands in NH4+ (H2O)n evolve from a quartet at small sizes (n<7), to a doublet around n=9, and then to a single peak at the n=20 magic number cluster, before the doublet re-emerges at larger sizes. This spectral simplification at the magic number cluster mirrors that found earlier in the H+(H2O)n clusters. We characterize the likely structures at play for the n=19 and 20 clusters with electronic structure calculations. The most stable form of the n=20 cluster is predicted to have a surface-solvated NH4+ ion that lies considerably lower in energy than isomers with the NH4+ in the interior.  相似文献   

10.
The vibrational spectroscopy of the electronically closed-shell (Al 2O 3) n (AlO) (+) cations with n = 1-4 is studied in the 530-1200 cm (-1) range by infrared predissociation spectroscopy of the corresponding ion-He atom complexes in combination with quantum chemical calculations. In all cases we find, assisted by a genetic algorithm, global minimum structures that differ considerably from those derived from known modifications of bulk alumina. The n = 1 and n = 4 clusters exhibit an exceptionally stable conical structure of C 3 v symmetry, whereas for n = 2 and n = 3, multiple isomers of lower symmetry and similar energy may contribute to the recorded spectra. A blue shift of the highest energy absorption band is observed with increasing cluster size and attributed to a shortening of Al-O bonds in the larger clusters. This intense band is assigned to vibrational modes localized on the rim of the conical structures for n = 1 and n = 4 and may aid in identifying similar, highly symmetric structures in larger ions.  相似文献   

11.
Anionic tetrahydrofuran clusters (THF)(n) (-) (1≤n≤100) are studied with photoelectron imaging as gas-phase precursors for electrons solvated in THF. Photoelectron spectra of clusters up to n=5 show two peaks, one of which is attributed to a solvated open chain radical anion and the other to the closed THF ring. At n=6, the spectra change shape abruptly, which become more characteristic of (THF)(n) (-) clusters containing solvated electrons. From n=6-100, the vertical detachment energies (VDEs) of these solvated electron clusters increase from 1.96 to 2.71 eV, scaling linearly with n(-1/3). For fully deuterated (THF-d8)(n) (-) clusters, the apparent transition to a solvated electron cluster is delayed to n=11. Extrapolation of the VDEs to infinite cluster size yields a value of 3.10 eV for the bulk photoelectric threshold. The relatively large VDEs at onset and small stabilization with increasing cluster size compared to other solvated electron clusters may reflect the tendency of the bulk solvent to form preexisting voids that can readily solvate a free electron.  相似文献   

12.
We have used ab initio methods to study the possible transition between icosahedral (ico) and cuboctahedral (fcc) structures in lead nanoclusters of sizes up to 309 atoms. Spontaneous fcc-to-ico transition in Pb(13) was observed in the ab initio molecular dynamics (MD) simulations at various temperatures. The transition path can be described predominantly by an angular variable s, which can, generally be applied to the similar transitions in clusters of larger sizes and was observed to follow the Mackay model. We have calculated the two-dimensional energy surface that describes the transition in Pb(13) and found a barrierless fcc-to-ico transition path, which is consistent with the observed spontaneous transition in the ab initio MD simulations. The atomic displacements in the transition were identified as one of the vibrational eigenmodes of these two Pb(13) clusters. For clusters of larger sizes (Pb(n), where n = 55, 147, and 309), the possible transitions following similar paths were determined not to be barrierless and the sizes of the barriers were determined by the ab initio elastic band method.  相似文献   

13.
Cationic water clusters containing iodine, of the composition I(H2O)n+, n = 0-25, are generated in a laser vaporization source and investigated by FT-ICR mass spectrometry. An investigation of blackbody radiation-induced fragmentation of size-selected clusters I(H2O)n+, n = 3-15, under collision-free conditions revealed an overall linear increase of the unimolecular rate constant with cluster size, similar to what has been observed previously for other hydrated ions. Above a certain critical size, I(H2O)n+, n greater than or approx. 13, reacts with HCl by formation of the interhalide ICl and a protonated water cluster, which is the reverse of a known solution-phase reaction. Accompanying density functional calculations illustrate the conceptual differences between cationic and anionic iodine-water clusters I(H2O)n+/-. While I-(H2O)n is genuinely a hydrated iodide ion, the cationic closed-shell species I(H2O)n+ may be best viewed as a protonated water cluster, in which one water molecule is replaced by hypoiodous acid. In the strongly acidic environment, HOI is protonated because of its high proton affinity. However, similar to the well-known H3O+/H5O2+ controversy in protonated water clusters, a smooth transition between H2IO+ and H4IO2+ as core ions is observed for different cluster sizes.  相似文献   

14.
TiO2 is a wide-band-gap semiconductor, and it is an important material for photocatalysis. Here we report an experimental investigation of the electronic structure of (TiO2)n clusters and how their band gap evolves as a function of size using anion photoelectron spectroscopy (PES). PES spectra of (TiO2)n- clusters for n = 1-10 have been obtained at 193 nm (6.424 eV) and 157 nm (7.866 eV). The high photon energy at 157 nm allows the band gap of the TiO2 clusters to be clearly revealed up to n = 10. The band gap is observed to be strongly size-dependent for n < 7, but it rapidly approaches the bulk limit at n = 7 and remains constant up to n = 10. All PES features are observed to be very broad, suggesting large geometry changes between the anions and the neutral clusters due to the localized nature of the extra electron in the anions. The measured electron affinities and the energy gaps are compared with available theoretical calculations. The extra electron in the (TiO2)n- clusters for n > 1 appears to be localized in a tricoordinated Ti atom, creating a single Ti3+ site and making these clusters ideal molecular models for mechanistic understanding of TiO2 surface defects and photocatalytic properties.  相似文献   

15.
We present optical absorption spectra in the UV-visible range (1.5 eV < E < 6 eV) for mass selected neutral gold clusters Au(n) (n = 1-5 and 7-9) embedded in solid Ne at 7 K. The experimental spectra are compared with time-dependent density functional calculations. Electronic transitions are distributed over the whole energy range without any concentration of the oscillator strength in a small energy window, characteristic for the more s-like metals such as the alkalis or silver. Contrary to the case of silver and partly copper clusters, transitions issued from mainly d-type states are significantly involved in low energy transitions. The measured integrated cross section is smaller (<20%) than expected from a free-electron system, manifesting the strong screening of the s electrons due to the proximity of the s and d levels in gold.  相似文献   

16.
Density functional theory is used to carry out a systematic study of zero-temperature structural and energy properties of endohedrally confined hydrogen clusters as a function of pressure and the cluster size. At low pressures, the most stable structural forms of (H(2))(n) possess rotational symmetry that changes from C(4) through C(5) to C(6) as the cluster grows in size from n=8 through n=12 to n=15. The equilibrium configurational energy of the clusters increases with an increase of the pressure. The rate of this increase, however, as gauged on the per atom basis is different for different clusters sizes. As a consequence, the size dependencies of the configurational energies per atom at different fixed values of pressure are nonmonotonic functions. At high pressures, the molecular (H(2))(n) clusters gradually become atomic or dominantly atomic. The pressure-induced changes in the HOMO-LUMO gap of the clusters indicate a finite-size analog of the pressure-driven metallization of the bulk hydrogen. The ionization potentials of the clusters decrease with the increase of pressure on them.  相似文献   

17.
Attachment of free electrons to water clusters embedded in helium droplets leads to water-cluster anions (H2O)n(-) and (D2O)n(-) of size n > or = 2. Small water-cluster anions bind to up to 10 helium atoms, providing compelling evidence for the low temperature of these complexes, but the most abundant species are bare cluster anions. In contrast to previous experiments on bare water clusters, which showed very pronounced magic and anti-magic anion sizes below n = 12, the presently observed size distributions vary much more smoothly, and all sizes are easily observed. Noticeable differences are also observed in the stoichiometry of fragment anions formed upon dissociative electron attachment and the energy dependence of their yield. Spectroscopic characterization of these ultracold water-cluster anions promises to unravel the relevance of metastable configurations in experiments and the nature of the still controversial bonding sites for the excess electron in small water-cluster anions.  相似文献   

18.
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.  相似文献   

19.
Room temperature CO adsorption on isolated gold cluster cations is studied over a wide size range (Au(n) (+),126), with notable exceptions at n=30, 31 and 48, 49 which manifest local binding energy maxima. For the smallest sizes (3相似文献   

20.
Time-resolved photoelectron imaging has been used to study the relaxation dynamics of small Hg(n) (-) clusters (n=7-13,15,18) following intraband electronic excitation at 1250 nm (1.0 eV). This study furthers our previous investigation of single electron, intraband relaxation dynamics in Hg(n) (-) clusters at 790 nm by exploring the dynamics of smaller clusters (n=7-10), as well as those of larger clusters (n=11-13,15,18) at a lower excitation energy. We measure relaxation time scales of 2-9 ps, two to three times faster than seen previously after 790 nm excitation of Hg(n) (-), n=11-18. These results, along with size-dependent trends in the absorption cross-section and photoelectron angular distribution anisotropy, suggest significant evolution of the cluster anion electronic structure in the size range studied here. Furthermore, the smallest clusters studied here exhibit 35-45 cm(-1) oscillations in pump-probe signal at earliest temporal delays that are interpreted as early coherent nuclear motion on the excited potential energy surfaces of these clusters. Evidence for evaporation of one or two Hg atoms is seen on a time scale of tens of picoseconds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号