首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE‐enhanced 1H NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for 1H spectra. In addition, the use of a co‐substrate, whose signals may obscure the 1H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE‐hyperpolarized 2D 1H NMR spectra of mixtures of small molecules at sub‐millimolar concentrations in a single scan. The method relies on the use of para‐hydrogen together with a deuterated co‐substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE.  相似文献   

2.
Real‐time band‐selective homonuclear 1H decoupling during data acquisition of z‐filtered J‐resolved spectroscopy produces 1H‐decoupled 1H NMR spectra and leads to sensitivity enhancement and improved resolution, and thus aids the measurement of J couplings and residual dipolar couplings in crowded regions of 1H NMR spectrum. High quality spectra from peptides, organic molecules, and also from enantiomers dissolved in weakly aligned chiral media are reported.  相似文献   

3.
Hyperpolarized magnetic resonance spectroscopy enables quantitative, non‐radioactive, real‐time measurement of imaging probe biodistribution and metabolism in vivo. Here, we investigate and report on the development and characterization of hyperpolarized acetylsalicylic acid (aspirin) and its use as a nuclear magnetic resonance (NMR) probe. Aspirin derivatives were synthesized with single‐ and double‐13C labels and hyperpolarized by dynamic nuclear polarization with 4.7 % and 3 % polarization, respectively. The longitudinal relaxation constants (T1) for the labeled acetyl and carboxyl carbonyls were approximately 30 seconds, supporting in vivo imaging and spectroscopy applications. In vitro hydrolysis, transacetylation, and albumin binding of hyperpolarized aspirin were readily monitored in real time by 13C‐NMR spectroscopy. Hyperpolarized, double‐labeled aspirin was well tolerated in mice and could be observed by both 13C‐MR imaging and 13C‐NMR spectroscopy in vivo.  相似文献   

4.
5.
NMR hyperpolarization techniques enhance nuclear spin polarization by several orders of magnitude resulting in corresponding sensitivity gains. This enormous sensitivity gain enables new applications ranging from studies of small molecules by using high-resolution NMR spectroscopy to real-time metabolic imaging in vivo. Several hyperpolarization techniques exist for hyperpolarization of a large repertoire of nuclear spins, although the 13C and 15N sites of biocompatible agents are the key targets due to their widespread use in biochemical pathways. Moreover, their long T1 allows hyperpolarized states to be retained for up to tens of minutes. Signal amplification by reversible exchange (SABRE) is a low-cost and ultrafast hyperpolarization technique that has been shown to be versatile for the hyperpolarization of 15N nuclei. Although large sensitivity gains are enabled by hyperpolarization, 15N natural abundance is only ∼0.4 %, so isotopic labeling of the molecules to be hyperpolarized is required in order to take full advantage of the hyperpolarized state. Herein, we describe selected advances in the preparation of 15N-labeled compounds with the primary emphasis on using these compounds for SABRE polarization in microtesla magnetic fields through spontaneous polarization transfer from parahydrogen. Also, these principles can certainly be applied for hyperpolarization of these emerging contrast agents using dynamic nuclear polarization and other techniques.  相似文献   

6.
Recently developed dynamic nuclear polarization (DNP) technology offers the potential of increasing the NMR sensitivity of even rare nuclei for biological imaging applications. Hyperpolarized 89Y is an ideal candidate because of its narrow NMR linewidth, favorable spin quantum number (I= ), and long longitudinal relaxation times (T1). Strong NMR signals were detected in hyperpolarized 89Y samples of a variety of yttrium complexes. A dataset of 89Y NMR data composed of 23 complexes with polyaminocarboxylate ligands was obtained using hyperpolarized 89Y measurements or 1H,89Y‐HMQC spectroscopy. These data were used to derive an empirical equation that describes the correlation between the 89Y chemical shift and the chemical structure of the complexes. This empirical correlation serves as a guide for the design of 89Y sensors. Relativistic (DKH2) DFT calculations were found to predict the experimental 89Y chemical shifts to a rather good accuracy.  相似文献   

7.
We report the synthesis and characterisation of new examples of meso‐hydroxynickel(II) porphyrins with 5,15‐diphenyl and 10‐phenyl‐5,15‐diphenyl/diaryl substitution. The OH group was introduced by using carbonate or hydroxide as nucleophile by using palladium/phosphine catalysis. The NiPor?OHs exist in solution in equilibrium with the corresponding oxy radicals NiPor?O.. The 15‐phenyl group stabilises the radicals, so that the 1H NMR spectra of {NiPor?OH} are extremely broad due to chemical exchange with the paramagnetic species. The radical concentration for the diphenylporphyrin analogue is only 1 %, and its NMR line‐broadening was able to be studied by variable‐temperature NMR spectroscopy. The EPR signals of NiPor?O. are consistent with somewhat delocalised porphyrinyloxy radicals, and the spin distributions calculated by using density functional theory match the EPR and NMR spectroscopic observations. Nickel(II) meso‐hydroxy‐10,20‐diphenylporphyrin was oxidatively coupled to a dioxo‐terminated porphodimethene dyad, the strongly red‐shifted electronic spectrum of which was successfully modelled by using time‐dependent DFT calculations.  相似文献   

8.
Dissolution dynamic nuclear polarization (DNP) enables high‐sensitivity solution‐phase NMR experiments on long‐lived nuclear spin species such as 15N and 13C. This report explores certain features arising in solution‐state 1H NMR upon polarizing low‐γ nuclear species. Following solid‐state hyperpolarization of both 13C and 1H, solution‐phase 1H NMR experiments on dissolved samples revealed transient effects, whereby peaks arising from protons bonded to the naturally occurring 13C nuclei appeared larger than the typically dominant 12C‐bonded 1H resonances. This enhancement of the satellite peaks was examined in detail with respect to a variety of mechanisms that could potentially explain this observation. Both two‐ and three‐spin phenomena active in the solid state could lead to this kind of effect; still, experimental observations revealed that the enhancement originates from 13C→1H polarization‐transfer processes active in the liquid state. Kinetic equations based on modified heteronuclear cross‐relaxation models were examined, and found to well describe the distinct patterns of growth and decay shown by the 13C‐bound 1H NMR satellite resonances. The dynamics of these novel cross‐relaxation phenomena were determined, and their potential usefulness as tools for investigating hyperpolarized ensembles and for obtaining enhanced‐sensitivity 1H NMR traces was explored.  相似文献   

9.
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are two extremely important techniques with applications ranging from molecular structure determination to human imaging. However, in many cases the applicability of NMR and MRI are limited by inherently poor sensitivity and insufficient nuclear spin lifetime. Here we demonstrate a cost‐efficient and fast technique that tackles both issues simultaneously. We use the signal amplification by reversible exchange (SABRE) technique to hyperpolarize the target 1H nuclei and store this polarization in long‐lived singlet (LLS) form after suitable radiofrequency (rf) pulses. Compared to the normal scenario, we achieve three orders of signal enhancement and one order of lifetime extension, leading to 1H NMR signal detection 15 minutes after the creation of the detected states. The creation of such hyperpolarized long‐lived polarization reflects an important step forward in the pipeline to see such agents used as clinical probes of disease.  相似文献   

10.
An important development in the field of NMR spectroscopy has been the advent of hyperpolarization approaches, capable of yielding nuclear spin states whose value exceeds by orders‐of‐magnitude what even the highest‐field spectrometers can afford under Boltzmann equilibrium. Included among these methods is an ex situ dynamic nuclear polarization (DNP) approach, which yields liquid‐phase samples possessing spin polarizations of up to 50 %. Although capable of providing an NMR sensitivity equivalent to the averaging of about 1 000 000 scans, this methodology is constrained to extract its “superspectrum” within a single—or at most a few—transients. This makes it a poor starting point for conventional 2D NMR acquisition experiments, which require a large number of scans that are identical to one another except for the increment of a certain t1 delay. It has been recently suggested that by merging this ex situ DNP approach with spatially encoded “ultrafast” methods, a suitable starting point could arise for the acquisition of 2D spectra on hyperpolarized liquids. Herein, we describe the experimental principles, potential features, and current limitations of such integration between the two methodologies. For a variety of small molecules, these new hyperpolarized ultrafast experiments can, for equivalent overall durations, provide heteronuclear correlation spectra at significantly lower concentrations than those currently achievable by conventional 2D NMR acquisitions. A variety of challenges still remain to be solved before bringing the full potential of this new integrated 2D NMR approach to fruition; these outstanding issues are discussed.  相似文献   

11.
Signal amplification by reversible exchange (SABRE) is an emerging hyperpolarization method in NMR spectroscopy, in which hyperpolarization is transferred through the scalar coupling network of para‐hydrogen derived hydrides in a metal complex to a reversibly bound substrate. Substrates can even be hyperpolarized at concentrations below that of the metal complex by addition of a suitable co‐substrate. Here we investigate the catalytic system used for trace detection in NMR spectroscopy with [Ir(IMes)(H)2(L)3]+ (IMes=1,3‐dimesitylimidazol‐2‐ylidene) as catalyst, pyridine as a substrate and 1‐methyl‐1,2,3‐triazole as co‐substrate in great detail. With density functional theory (DFT), validated by extended X‐ray absorption fine structure (EXAFS) experiments, we provide explanations for the relative abundance of the observed metal complexes, as well as their contribution to SABRE. We have established that the interaction between iridium and ligands cis to IMes is weaker than that with the trans ligand, and that in mixed complexes with pyridine and triazole, the latter preferentially takes up the trans position.  相似文献   

12.
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) have become important techniques in many research areas. One major limitation is the relatively low sensitivity of these methods, which recently has been addressed by hyperpolarization. However, once hyperpolarization is imparted on a molecule, the magnetization typically decays within relatively short times. Singlet states are well isolated from the environment, such that they acquire long lifetimes. We describe herein a model reaction for read‐out of a hyperpolarized long‐lived state in dimethyl maleate using thiol conjugate addition. This type of reaction could lend itself to monitoring oxidative stress or hypoxia by sensitive detection of thiols. Similar reactions could be used in biosensors or assays that exploit molecular switching. Singlet lifetimes of about 4.7 min for 1H spins in [D4]MeOH are seen in this system.  相似文献   

13.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

14.
We report a novel 1D J‐edited pure shift NMR experiment (J‐PSHIFT) that was constructed from a pseudo 2D experiment for the direct measurement of proton–proton scalar couplings. The experiment gives homonuclear broad‐band 1H‐decoupled 1H NMR spectra, which provide a single peak for chemically distinct protons, and only retain the homonuclear‐scalar‐coupled doublet pattern at the chemical‐shift positions of the protons in the coupled network of a specific proton. This permits the direct and unambiguous measurement of the magnitudes of the couplings. The incorporation of a 1D selective correlation spectroscopy (COSY)/ total correlation spectroscopy (TOCSY) block in lieu of the initial selective pulse, results in the exclusive detection of the correlated spectrum of a specific proton.  相似文献   

15.
Hyperpolarized magnetic resonance spectroscopy enables quantitative, non‐radioactive, real‐time measurement of imaging probe biodistribution and metabolism in vivo. Here, we investigate and report on the development and characterization of hyperpolarized acetylsalicylic acid (aspirin) and its use as a nuclear magnetic resonance (NMR) probe. Aspirin derivatives were synthesized with single‐ and double‐13C labels and hyperpolarized by dynamic nuclear polarization with 4.7 % and 3 % polarization, respectively. The longitudinal relaxation constants (T1) for the labeled acetyl and carboxyl carbonyls were approximately 30 seconds, supporting in vivo imaging and spectroscopy applications. In vitro hydrolysis, transacetylation, and albumin binding of hyperpolarized aspirin were readily monitored in real time by 13C‐NMR spectroscopy. Hyperpolarized, double‐labeled aspirin was well tolerated in mice and could be observed by both 13C‐MR imaging and 13C‐NMR spectroscopy in vivo.  相似文献   

16.
Experimental evidence for the presence of tert‐butyl cations, which are important intermediates in acid‐catalyzed heterogeneous reactions, on solid acids has still not been provided to date. By combining density functional theory (DFT) calculations with 1H/13C magic‐angle‐spinning NMR spectroscopy, the tert‐butyl cation was successfully identified on zeolite H‐ZSM‐5 upon conversion of isobutene by capturing this intermediate with ammonia.  相似文献   

17.
Fluorinated substances are important in chemistry, industry, and the life sciences. In a new approach, parahydrogen‐induced polarization (PHIP) is applied to enhance 19F MR signals of (perfluoro‐n‐hexyl)ethene and (perfluoro‐n‐hexyl)ethane. Unexpectedly, the end‐standing CF3 group exhibits the highest amount of polarization despite the negligible coupling to the added protons. To clarify this non‐intuitive distribution of polarization, signal enhancements in deuterated chloroform and acetone were compared and 19F–19F NOESY spectra, as well as 19F T1 values were measured by NMR spectroscopy. By using the well separated and enhanced signal of the CF3 group, first 19F MR images of hyperpolarized linear semifluorinated alkenes were recorded.  相似文献   

18.
Overhauser–DNP‐enhanced homonuclear 2D 19F correlation spectroscopy with diagonal suppression is presented for small molecules in the solution state at moderate fields. Multi‐frequency, multi‐radical studies demonstrate that these relatively low‐field experiments may be operated with sensitivity rivalling that of standard 200–1000 MHz NMR spectroscopy. Structural information is accessible without a sensitivity penalty, and diagonal suppressed 2D NMR correlations emerge despite the general lack of multiplet resolution in the 1D ODNP spectra. This powerful general approach avoids the rather stiff excitation, detection, and other special requirements of high‐field 19F NMR spectroscopy.  相似文献   

19.
Low and medium molecular weight copolymers constituted by glycolide and p‐dioxanone units have been synthesized by a ring‐opening polymerization. The p‐dioxanone monomer was obtained from (2‐hydroxyethoxy)acetate or by thermal depolymerization of poly(p‐dioxanone). 1H and 13C NMR spectra were highly sensitive to the chemical sequences, which were effectively assigned by considering the data from samples with different compositions, and the acquisition of heteronuclear 1H and 13C NMR‐correlated spectra. End groups were also identified, allowing methylene protons of sequences involving up to two glycolide units to be distinguished. These data seem basic to analyze degradation products or the influence of thermal treatments in chain microstructure. Glycolide/p‐dioxanone copolymers are an interesting system because changes on chemical sequences can easily occur due to a depolymerization reaction that eliminates p‐dioxanone residues. Furthermore, depending on the polymerization conditions, the occurrence of transesterification reactions may be highly significant. These reactions have a great impact in properties such as the melting temperature and can be easily quantified by NMR spectroscopy because of the occurrence of a new chemical sequence. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

20.
Glycidylmethacrylate/vinyl acetate copolymers were prepared by solution polymerization with benzene as a solvent and benzoyl peroxide as an initiator. Copolymer compositions were determined from 1H NMR spectra, and comonomer reactivity ratios were determined by the Kelen–Tudos (KT) method and the nonlinear least‐squares error‐in‐variable method (EVM). The reactivity ratios obtained from KT and EVM were rG = 37.4 ± 12.0 and rV = 0.036 ± 0.019 and rG = 35.2 and rV = 0.03, respectively. Complete spectral assignments of 13C and 1H NMR spectra were done with the help of distortionless enhancement by polarization transfer and two‐dimensional 13C–1H heteronuclear single quantum coherence and total correlation spectroscopy. The methyl, methine, and methylene carbon resonance showed both stereochemical and compositional sensitivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4051–4060, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号