首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hung LH  Choi KM  Tseng WY  Tan YC  Shea KJ  Lee AP 《Lab on a chip》2006,6(2):174-178
A multifunctional and high-efficiency microfluidic device for droplet generation and fusion is presented. Through unique design of the micro-channels, the device is able to alternately generate droplets, generating droplet ratios ranging from 1 ratio 5 to 5 ratio 1, and fuse droplets, enabling precise chemical reactions in several picoliters on a single chip. The controlled fusion is managed by passive control based on the channel geometry and liquid phase flow. The synthesis of CdS nanoparticles utilizing each fused droplet as a microreactor for rapid and efficient mixing of reagents is demonstrated in this paper. Following alternating droplet generation, the channel geometry allows the exclusive fusion of alternate droplets with concomitant rapid mixing and produces supersaturated solution of Cd2+ and S2- ions to form CdS nanoparticles in each fused droplet. The spectroscopic properties of the CdS nanoparticles produced by this method are compared with CdS prepared by bulk mixing.  相似文献   

2.
We present a method for the mixing of fluids in a quasi two-dimensional system with low Reynolds number by means of generating a vortical flow. A two-dimensional cavitation bubble is induced in liquid-expanded phase by locally heating a Langmuir monolayer at the air/liquid interface with an IR laser. The laser-induced cavitation bubble works as a microfluidic pump and generates a thermocapillary flow around the pump. As a result, the surrounding liquid-expanded phase flows in one direction. Perturbing the thermocapillary flow with solid folds that are created by compression and reexpansion of the monolayer induces the vortical flow behind the folds. Applying the equation of creeping flow, we find a torque halfway from the center causing the vortical flow. The vorticity created in this way stretches the liquid-expanded and gaseous phase in the azimuthal direction and at the same time thins both phases in the radial direction. If the vortical flow could be maintained long enough to reach a radial thinning that would allow the interdiffusion of surfactants at the surface, then this technique would open a route for the effective two-dimensional microfluidic mixing at low Reynolds numbers.  相似文献   

3.
Passive microfluidic channel geometries for control of droplet fission, fusion and sorting are designed, fabricated, and tested. In droplet fission, the inlet width of the bifurcating junction is used to control the range of breakable droplet sizes and the relative resistances of the daughter channels were used to control the volume of the daughter droplets. Droplet fission is shown to produce concentration differences in the daughter droplets generated from a primary drop with an incompletely mixed chemical gradient, and for droplets in each of the bifurcated channels, droplets were found to be monodispersed with a less than 2% variation in size. Droplet fusion is demonstrated using a flow rectifying design that can fuse multiple droplets of same or different sizes generated at various frequencies. Droplet sorting is achieved using a bifurcating flow design that allows droplets to be separated base on their sizes by controlling the widths of the daughter channels. Using this sorting design, submicron satellite droplets are separated from the larger droplets.  相似文献   

4.
Mazutis L  Griffiths AD 《Lab on a chip》2012,12(10):1800-1806
We report a microfluidic approach, which allows selective and controlled 1 : 1, 2 : 1 or 3 : 1 droplet fusion. A surfactant-stabilized droplet with an interfacial surfactant coverage, Γ, of >98% will fuse spontaneously with a second droplet when Γ of the latter droplet is <16%. However, when Γ of the second droplet is ~66%, the two droplets will not fuse, unless they have previously been brought into contact for critical time τ. Therefore, controlling the number of droplets in contact for time τ allows precise control over the number of fused droplets. We have demonstrated efficient (proportion of droplets coalesced p(c) = 1.0, n > 1000) and selective 1 : 1, 2 : 1 or 3 : 1 droplet fusion (proportion of correctly fused droplets p(s) > 0.99, n > 1000). Coalescence in this regime is induced by hydrodynamic flow causing interface separation and is efficient at different Ca numbers and using different dispersed phases, continuous phases and surfactants. However, when Γ of the second droplet is ~96% coalescence is no longer observed. Droplet-based microfluidic systems, in which each droplet functions as an independent microreactor, are proving a promising tool for a wide range of ultrahigh-throughput applications in biology and chemistry. The addition of new reagents to pre-formed droplets is critical to many of these applications and we believe the system described here is a simple and flexible method to do so, as well as a new tool to study interfacial stability phenomena.  相似文献   

5.
We developed a microfluidic device to form monodisperse droplets with high productivity by anisotropic elongation of a thread flow, defined as a threadlike flow of a dispersed liquid phase in a flow of an immiscible, continuous liquid phase. The thread flow was anisotropically elongated in the depth direction in a straight microchannel with a step, where the microchannel depth changed. Consequently, the elongated thread flow was given capillary instability (Rayleigh-Plateau instability) and was continuously transformed into monodisperse droplets at the downstream area of the step in the microchannel. We examined the effects of the flow rates of the dispersed phase and the continuous phase on the droplet formation behavior, including the droplet diameter and droplet formation frequency. The droplet diameter increased as the fraction of the dispersed-phase flow rate relative to the total flow rate increased and was independent of the total flow rate. The droplet formation frequency proportionally increased with the total flow rate at a constant dispersed-phase flow rate fraction. These results are explained in terms of a mechanism similar to that of droplet formation from a cylindrical liquid thread flow by Rayleigh-Plateau instability. The microfluidic device described was capable of forming monodisperse droplets with a 160-microm average diameter and 3-microm standard deviation at a droplet formation frequency of 350 droplets per second from a single thread flow. The highest total flow rate achieved was 6 mL/h using the present device composed of a straight microchannel with a step. We also demonstrated parallel droplet formation by anisotropic elongation of multiple thread flows; the process was applied to form W/O and O/W droplets. The highly productive droplet formation process presented in this study is expected to be useful for future industrial applications.  相似文献   

6.
Dijkink R  Ohl CD 《Lab on a chip》2008,8(10):1676-1681
Lab-on-a-chip devices are in strong demand as versatile and robust pumping techniques. Here, we present a cavitation based technique, which is able to pump a volume of 4000 microm3 within 75 micros against an estimated pressure head of 3 bar. The single cavitation event is created by focusing a laser pulse in a conventional PDMS microfluidic chip close to the channel opening. High-speed photography at 1 million frames s(-1) resolves the flow in the supply channel, pump channel, and close to the cavity. The elasticity of the material affects the overall fluid flow. Continuous pumping at repetition rates of up to 5 Hz through 6 mm long square channels of 20 microm width is shown. A parameter study reveals the key-parameters for operation: the distance between the laser focus and the channel, the maximum bubble size, and the chamber geometry.  相似文献   

7.
L Xu  H Lee  R Panchapakesan  KW Oh 《Lab on a chip》2012,12(20):3936-3942
We propose a robust droplet fusion and sorting method for two parallel trains of droplets that is relatively insensitive to frequency and phase mismatch. Conventional methods of droplet fusion require an extremely precise control of aqueous/oil flows for perfect frequency matching between two trains of droplets. In this work, by combining our previous two methods (i.e., droplet synchronization using railroad-like channels and manipulation of shape-dependent droplets using guiding tracks), we realized an error-free droplet fusion/sorting device for the two parallel trains of droplets. If droplet pairs are synchronized through a railroad-like channel, they are electrically fused and the fused droplets transit to a middle guiding track to flow in a middle channel; otherwise non-synchronized non-fused droplets will be discarded into the side waste channels by flowing through their own guiding tracks. The simple droplet synchronization, fusion, and sorting technology will have widespread application in droplet-based chemical or biological experiments, where two trains of the chemically or biologically treated or pre-formed droplets yield a train of 100% one-to-one fused droplets at the desired outlet channel by sorting all the non-synchronized non-fused droplets into waste outlets.  相似文献   

8.
We previously established an automatic droplet-creation technique that only required air evacuation of a PDMS microfluidic device prior to use. Although the rate of droplet production with this technique was originally slow (∼10 droplets per second), this was greatly improved (∼470 droplets per second) in our recent study by remodeling the original device configuration. This improvement was realized by the addition of a degassed PDMS layer with a large surface area-to-volume ratio that served as a powerful vacuum generator. However, the incorporation of the additional PDMS layer (which was separate from the microfluidic PDMS layer itself) into the device required reversible bonding of five different layers. In the current study, we aimed to simplify the device architecture by reducing the number of constituent layers for enhancing usability of this microfluidic droplet generator while retaining its rapid production rate. The new device consisted of three layers. This comprised a degassed PDMS slab with microfluidic channels on one surface and tens of thousands of vacuum-generating micropillars on the other surface, which was simply sandwiched by PMMA layers. Despite its simplified configuration, this new device created monodisperse droplets at an even faster rate (>1000 droplets per second).  相似文献   

9.
We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at lambda = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications.  相似文献   

10.
This article describes the process of formation of droplets and bubbles in microfluidic T-junction geometries. At low capillary numbers break-up is not dominated by shear stresses: experimental results support the assertion that the dominant contribution to the dynamics of break-up arises from the pressure drop across the emerging droplet or bubble. This pressure drop results from the high resistance to flow of the continuous (carrier) fluid in the thin films that separate the droplet from the walls of the microchannel when the droplet fills almost the entire cross-section of the channel. A simple scaling relation, based on this assertion, predicts the size of droplets and bubbles produced in the T-junctions over a range of rates of flow of the two immiscible phases, the viscosity of the continuous phase, the interfacial tension, and the geometrical dimensions of the device.  相似文献   

11.
Fabrication of surfaces with heterogeneous contact angle hysteresis enables extraction of droplet samples from bulk liquid volumes. These surfaces are created by printing high hysteresis wax islands onto low hysteresis superhydrophobic paper. The volume of the sampled droplets depends on the hysteresis of the printed islands, which can be controlled through both physical and chemical means. Physically, hysteresis is modified through the addition of surface roughness. Chemical hysteresis is tuned by changing the active chemical groups present on the wax surface. The observed control of the volume of sampled droplets, which is necessary for quantitative biochemical or chemical assays, extends to scenarios in which multiple droplet samples are extracted simultaneously from a single bulk droplet. Demonstration of the capacity of this technique to perform colorimetric glucose immunoassays is described. The ability to obtain well-defined microliter sample volumes and to extract several samples simultaneously from the same source enables the development of two-dimensional paper-based microfluidic devices for biomedical testing.  相似文献   

12.
Droplet microfluidics performed in poly(methyl methacrylate) (PMMA) microfluidic devices resulted in significant wall wetting by water droplets formed in a liquid-liquid segmented flow when using a hydrophobic carrier fluid such as perfluorotripropylamine (FC-3283). This wall wetting led to water droplets with nonuniform sizes that were often trapped on the wall surfaces, leading to unstable and poorly controlled liquid-liquid segmented flow. To circumvent this problem, we developed a two-step procedure to hydrophobically modify the surfaces of PMMA and other thermoplastic materials commonly used to make microfluidic devices. The surface-modification route involved the introduction of hydroxyl groups by oxygen plasma treatment of the polymer surface followed by a solution-phase reaction with heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane dissolved in fluorocarbon solvent FC-3283. This procedure was found to be useful for the modification of PMMA and other thermoplastic surfaces, including polycyclic olefin copolymer (COC) and polycarbonate (PC). Angle-resolved X-ray photoelectron spectroscopy indicated that the fluorination of these polymers took place with high surface selectivity. This procedure was used to modify the surface of a PMMA droplet microfluidic device (DMFD) and was shown to be useful in reducing the wetting problem during the generation of aqueous droplets in a perfluorotripropylamine (FC-3283) carrier fluid and could generate stable segmented flows for hours of operation. In the case of PMMA DMFD, oxygen plasma treatment was carried out after the PMMA cover plate was thermally fusion bonded to the PMMA microfluidic chip. Because the appended chemistry to the channel wall created a hydrophobic surface, it will accommodate the use of other carrier fluids that are hydrophobic as well, such as hexadecane or mineral oils.  相似文献   

13.
Conventional droplet-based microfluidic systems require expensive, bulky external apparatuses, such as electric power supplies and pressure-driven pumps for fluid transportation. This study demonstrates an alternative way to produce emulsion droplets by autonomous fluid-handling based on the gas permeability of poly(dimethylsiloxane) (PDMS). Furthermore, basic concepts of fluid-handling are expanded to control the direction of the microfluid in the microfluidic device. The alternative pumping energy resulting from the high gas permeability of PDMS is used to generate water-in-oil (W/O) emulsions, which require no additional structures apart from microchannels. We can produce emulsion droplets by simple loading of the oil and aqueous solutions into the inlet reservoirs. During the operation of the microfluidic device, changes in droplet size, volumetric flow rate, and droplet generation frequency were quantitatively analyzed. As a result, we found that changes in the wetting properties of the microchannel greatly influence the volumetric flow rate and droplet generation frequency. This alternative microfluidic approach for preparing emulsion droplets in a simple and efficient manner is designed to improve the availability of emulsion droplets for point of care bioanalytical applications, in situ synthesis of materials, and on-site sample preparation tools.  相似文献   

14.
流体在微流通道中形成剪切流场(低雷诺数).不同于宏观体系,由于剪切力和表面张力的竞争作用,产生的液滴在微尺度下的微流通道中形成特殊的排列现象---周期性类似“晶格”排列现象.设计了新型流动聚焦型微流控芯片,分析研究在微流体系中液滴周期性图案化排列和转变机理性,液滴排列模式受两方面因素影响:水油两相的流速比值和微通道尺寸.当微通道宽度为250或300 μm时,液滴形成单层分散,双层和单层挤压排列.当微通道宽度为350 μm 时,液滴会形成单层分散到三层排列到双层挤压最后到单层挤压排列.当出口通道宽度增加到400 μm时,甚至出现了液滴四层排列的现象.同时研究了各个液滴排列模式的“转变点”.  相似文献   

15.
This paper describes a microfluidic platform for the on-demand generation of multiple aqueous droplets, with varying chemical contents or chemical concentrations, for use in droplet based experiments. This generation technique was developed as a complement to existing techniques of continuous-flow (streaming) and discrete-droplet generation by enabling the formation of multiple discrete droplets simultaneously. Here sets of droplets with varying chemical contents can be generated without running the risk of cross-contamination due to the isolated nature of each supply inlet. The use of pressure pulses to generate droplets in parallel is described, and the effect of droplet size is examined in the context of flow rates and surfactant concentrations. To illustrate this technique, an array of different dye-containing droplets was generated, as well as a set of droplets that displayed a concentration gradient of a fluorescent dye.  相似文献   

16.
Single cell analysis is of great significance to understand the physiological activity of organisms.Microfluidic droplet is an ideal analytical platform for single-cell analysis. We developed a microfluidic droplet splitting system integrated with a flow-focusing structure and multi-step splitting structures to form 8-line droplets and encapsulate single cells in the droplets. Droplet generation frequency reached1021 Hz with the aqueous phase flow rate of 1 m L/min and the oil phase flow rate of 15 mL /min. Relative standard deviation of the droplet size was less than 5% in a single channel, while less than 6% in all the8 channels. The system was used for encapsulating human whole blood cells. A single-cell encapsulation efficiency of 31% was obtained with the blood cell concentration of 2.5× 10~4cells/mL, and the multicellular droplet percentage was only 1.3%. The multi-step droplet splitting system for single cell encapsulation featured simple structure and high throughput.  相似文献   

17.
A new method for preparing poly (vinyl alcohol) (PVA) microspheres was developed by using droplet microfluidic technology. In the microfluidic chip, a large number of uniform, monodispersed PVA droplets were prepared quickly and continuously by using droplet formation technology, and the droplet preparation speed reached 7 per second. The size of the PVA droplets could be controlled by changing the injection flow rate of the two-phase fluid and the width of microfluidic channel. Then the PVA microspheres were formed by physical crosslinking. This method has high preparation efficiency and good monodispersity of the obtained microspheres. Moreover, the process does not require the incorporation of chemical crosslinking agents, avoiding interference with the inclusion material, and is well suited for applications such as drug carrier.  相似文献   

18.
Lee C  Lee J  Kim HH  Teh SY  Lee A  Chung IY  Park JY  Shung KK 《Lab on a chip》2012,12(15):2736-2742
This paper presents experimental results demonstrating the feasibility of high frequency ultrasonic sensing and sorting for screening single oleic acid (lipid or oil) droplets under continuous flow in a microfluidic channel. In these experiments, hydrodynamically focused lipid droplets of two different diameters (50 μm and 100 μm) are centered along the middle of the channel, which is filled with deionized (DI) water. A 30 MHz lithium niobate (LiNbO(3)) transducer, placed outside the channel, first transmits short sensing pulses to non-invasively determine the acoustic scattering properties of the individual droplets passing through the beam's focus. Integrated backscatter (IB) coefficients, utilized as a sorting criterion, are measured by analyzing the received echo signals from each droplet. When the IB values corresponding to 100 μm droplets are obtained, a custom-built LabVIEW panel commands the transducer to emit sinusoidal burst signals to commence the sorting operation. The number of droplets tested for the sorting is 139 for 50 μm droplets and 95 for 100 μm droplets. The sensing efficiencies are estimated to be 98.6% and 99.0%, respectively. The sorting is carried out by applying acoustic radiation forces to 100 μm droplets to direct them towards the upper sheath flow, thus separating them from the centered droplet flow. The sorting efficiencies are 99.3% for 50 μm droplets and 85.3% for 100 μm droplets. The results suggest that this proposed technique has the potential to be further developed into a cost-effective and efficient cell/microparticle sorting instrument.  相似文献   

19.
Gac SL  Zwaan E  van den Berg A  Ohl CD 《Lab on a chip》2007,7(12):1666-1672
We report here the sonoporation of HL60 (human promyelocytic leukemia) suspension cells in a microfluidic confinement using a single laser-induced cavitation bubble. Cavitation bubbles can induce membrane poration of cells located in their close vicinity. Membrane integrity of suspension cells placed in a microfluidic chamber is probed through either the calcein release out of calcein-loaded cells or the uptake of trypan blue. Cells that are located farther away than four times Rmax (maximum bubble radius) from the cavitation bubble center remain fully unaffected, while cells closer than 0.75 Rmax become porated with a probability of >75%. These results enable us to define a distance of 0.75 Rmax as a critical interaction distance of the cavitation bubble with HL60 suspension cells. These experiments suggest that flow-induced poration of suspension cells is applicable in lab-on-a-chip systems, and this might be an interesting alternative to electroporation.  相似文献   

20.
Using a microfluidic flow-focusing device, monodisperse water droplets in oil were generated and their interface populated by either 1 μm or 500 nm amine modified silica particles suspended in the water phase. The deformation and breakup of these Pickering droplets were studied in both pure extensional flow and combined extensional and shear flow at various capillary numbers using a microfluidic hyperbolic contraction. The shear resulted from droplet confinement and increased with droplet size and position along the hyperbolic contraction. Droplet deformation was found to increase with increasing confinement and capillary number. At low confinements and low capillary numbers, the droplet deformation followed the predictions of theory. For fully confined droplets, where the interface was populated by 1 μm silica particles, the droplet deformation increased precipitously and two tails were observed to form at the rear of the droplet. These tails were similar to those seen for surfactant covered droplets. At a critical capillary number, daughter droplets were observed to stream from these tails. Due to the elasticity of the particle-laden interface, these drops did not return to a spherical shape, but were observed to buckle. Although increases in droplet deformation were observed, no tail streaming occurred for the 500 nm silica particle covered droplets over the range of capillary numbers studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号