首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2-Thienyl and 2,6-bisthienyl BODIPY derivatives (BS-SS and BS-DS) were prepared that show intense absorption (ε = 65000 M(-1) cm(-1) at 507 nm) and a large Stokes shift (96 nm) vs the small Stokes shift of typical BODIPY (<15 nm). Control compounds with a thienyl unit at the 8-position or phenyl substituents at the 2,6-positions were prepared (BS-1 and 9). BS-1 shows absorption/emission in the blue-shifted range and a small Stokes shift (12 nm). Compound 9 shows absorption in the red-shifted range, but the Stokes shift (<30 nm) is much smaller than that for BS-SS and BS-DS. DFT calculations propose the large Stokes shifts of BS-SS and BS-DS are due to the remarkable geometry relaxation upon photoexcitation and its substantial effect on the energy levels of molecular orbitals. For the dyes with small Stokes shifts, much smaller geometry relaxations were found. The fluorophores were used for fluorescent thiol probes, with 2,4-dinitrobenzenesulfonyl (DNBS) as the fluorescence switch. Both fluorescence OFF-ON and unprecedented ON-OFF transduction were observed, which are attributed to the different photoinduced intramolecular electron-transfer (PET) profile. All the photophysics were rationalized by DFT calculations based on the concept of "electronic states" instead of the very often used approximation of "molecular orbitals".  相似文献   

2.
In a systematic approach we synthesized a new series of fluorescent probes incorporating donor–acceptor (D‐A) substituted 1,2,3‐triazoles as conjugative π‐linkers between the alkali metal ion receptor N‐phenylaza‐[18]crown‐6 and different fluorophoric groups with different electron‐acceptor properties (4‐naphthalimide, meso‐phenyl‐BODIPY and 9‐anthracene) and investigated their performance in organic and aqueous environments (physiological conditions). In the charge‐transfer (CT) type probes 1 , 2 and 7 , the fluorescence is almost completely quenched by intramolecular CT (ICT) processes involving charge‐separated states. In the presence of Na+ and K+ ICT is interrupted, which resulted in a lighting‐up of the fluorescence in acetonitrile. Among the investigated fluoroionophores, compound 7 , which contains a 9‐anthracenyl moiety as the electron‐accepting fluorophore, is the only probe which retains light‐up features in water and works as a highly K+/Na+‐selective probe under simulated physiological conditions. Virtually decoupled BODIPY‐based 6 and photoinduced electron transfer (PET) type probes 3 – 5 , where the 10‐substituted anthracen‐9‐yl fluorophores are connected to the 1,2,3‐triazole through a methylene spacer, show strong ion‐induced fluorescence enhancement in acetonitrile, but not under physiological conditions. Electrochemical studies and theoretical calculations were used to assess and support the underlying mechanisms for the new ICT and PET 1,2,3‐triazole fluoroionophores.  相似文献   

3.
氟硼二吡咯(BODIPY)类pH荧光探针分子是基于光诱导电子转移(PET)的荧光探针分子, 识别基团氮原子上引入不同取代基可呈现不同的光学灵敏度. 本文应用密度泛函理论(DFT)及含时密度泛函理论(TD-DFT)方法对六种含不同取代基的探针分子进行了几何构型优化及激发态计算, 探讨了不同取代基对PET效应影响. 计算结果表明: 基态时这些探针分子的最高占有分子轨道(HOMO)和最低未占有分子轨道(LUMO)都在荧光母体BODIPY的π, π*轨道, 而识别基团上氮原子孤对电子所在的轨道为HOMO-1轨道. 但是在激发态, 当氮原子上有两个取代基时, HOMO-1→LUMO跃迁的激发能都小于荧光团的HOMO→LUMO跃迁, 这将有可能产生PET效应并导致荧光熄灭, 而当氮原子上有一个取代基时不会出现这种现象. 通过激发态结构优化可以发现, 无论识别基团氮原子上有一个还是两个取代基, N原子的轨道对称性都发生变化, 由sp3→sp2, 孤对电子占据在p轨道上, 其轨道能级升高至荧光团的HOMO和LUMO轨道之间, 将导致不同程度的PET效应, 与实验结果一致.  相似文献   

4.
Photophysical data and orbital energy levels (from electrochemistry) were compared for molecules with the same BODIPY acceptor part (red) and perpendicularly oriented xanthene or BODIPY donor fragments (green). Transfer of energy, hence the photophysical properties of the cassettes, including the pH dependent fluorescence in the xanthene-containing molecules, correlates with the relative energies of the frontier orbitals in these systems. Intracellular sensing of protons is often achieved via sensors that switch off completely at certain pH values, but probes of this type are not easy to locate inside cells in their "off-state". A communication from these laboratories (J. Am. Chem. Soc., 2009, 131, 1642-3) described how the energy transfer cassette 1 could be used for intracellular imaging of pH. This probe is fluorescent whatever the pH, but its exact photophysical properties are governed by the protonation states of the xanthene donors. This work was undertaken to further investigate correlations between structure, photophysical properties, and pH for energy transfer cassettes. To achieve this, three other cassettes 2-4 were prepared: another one containing pH-sensitive xanthene donors (2) and two "control cassettes" that each have two BODIPY-based donors (3 and 4). Both the cassettes 1 and 2 with xanthene-based donors fluoresce red under slightly acidic conditions (pH < ~6) and green when the medium is more basic (>~7), whereas the corresponding cassettes with BODIPY donors give almost complete energy transfer regardless of pH. The cassettes that have BODIPY donors, by contrast, show no significant fluorescence from the donor parts, but the overall quantum yields of the cassettes when excited at the donor (observation of acceptor fluorescence) are high (ca. 0.6 and 0.9). Electrochemical measurements were performed to elucidate orbital energy level differences between the pH-fluorescence profiles of cassettes with xanthene donors, relative to the two with BODIPY donors. These studies confirm energy transfer in the cassettes is dramatically altered by analytes that perturb relative orbital levels. Energy transfer cassettes with distinct fluorescent donor and acceptor units provide a new, and potentially useful, approach to sensors for biomedical applications.  相似文献   

5.
A new fluorescent probe for lead ions, p-nitrophenyl 3H-phenoxazin-3-one-7-yl phosphoric acid (NPPA), has been synthesized by linking resorufLn (serving as a fluorophore and electron acceptor) to p-nitrophenol (serving as a fluorescence quencher and electron donor) through phosphodiester bonds. When NPPA was irradiated with light, intramolecular fluorescence self-quenching took place due to the PET (photoinduced electron transfer) from the donor to the acceptor. However, upon addition of Pb^Ⅱ, the phosphate ester bonds in the probe were cleaved and the fluorophore was released, accompanying the retrievement of fluorescence.  相似文献   

6.
A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells.  相似文献   

7.
A highly water soluble fluorescent probe was developed for sensitive and selective detection of biothiols with a red emission and a large Stokes shift. The probe was successfully applied to detect biothiols both in aqueous solution and in living cells.  相似文献   

8.
Near-infrared (NIR) fluorescence probes are especially useful for simple and noninvasive in vivo imaging inside the body because of low autofluorescence and high tissue transparency in the NIR region compared with other wavelength regions. However, existing NIR fluorescence probes for matrix metalloproteinases (MMPs), which are tumor, atherosclerosis, and inflammation markers, have various disadvantages, especially as regards sensitivity. Here, we report a novel design strategy to obtain a NIR fluorescence probe that is rapidly internalized by free diffusion and well retained intracellularly after activation by extracellular MMPs. We designed and synthesized four candidate probes, each consisting of a cell permeable or nonpermeable NIR fluorescent dye as a F?rster resonance energy transfer (FRET) donor linked to the NIR dark quencher BHQ-3 as a FRET acceptor via a MMP substrate peptide. We applied these probes for detection of the MMP activity of cultured HT-1080 cells, which express MMP2 and MT1-MMP, by fluorescence microscopy. Among them, the probe incorporating BODIPY650/665, BODIPY-MMP, clearly visualized the MMP activity as an increment of fluorescence inside the cells. We then applied this probe to a mouse xenograft tumor model prepared with HT-1080 cells. Following intratumoral injection of the probe, MMP activity could be visualized for much longer with BODIPY-MMP than with the probe containing SulfoCy5, which is cell impermeable and consequently readily washed out of the tissue. This simple design strategy should be applicable to develop a range of sensitive, rapidly responsive NIR fluorescence probes not only for MMP activity, but also for other proteases.  相似文献   

9.
A highly water‐soluble phenothiazine (PTZ)–boron dipyrromethene (BODIPY)‐based electron donor–acceptor dyad ( WS‐Probe ), which contains BODIPY as the signaling antennae and PTZ as the OCl? reactive group, was designed and used as a fluorescent chemosensor for the detection of OCl?. Upon addition of incremental amounts of NaOCl, the quenched fluorescence of WS‐Probe was enhanced drastically, which indicated the inhibition of reductive photoinduced electron transfer (PET) from PTZ to 1BODIPY*; the detection limit was calculated to be 26.7 nm . Selectivity studies with various reactive oxygen species, cations, and anions revealed that WS‐Probe was able to detect OCl? selectively. Steady‐state fluorescence studies performed at varied pH suggested that WS‐Probe can detect NaOCl and exhibits maximum fluorescence in the pH range of 7 to 8, similar to physiological conditions. ESI‐MS analysis and 1H NMR spectroscopy titrations showed the formation of sulfoxide as the major oxidized product upon addition of hypochlorite. More interestingly, when WS‐Probe was treated with real water samples, the fluorescence response was clearly visible with tap water and disinfectant, which indicated the presence of OCl? in these samples. The in vitro cell viability assay performed with human embryonic kidney 293 (HEK 293) cells suggested that WS‐probe is non‐toxic up to 10 μm and implicates the use of the probe for biological applications.  相似文献   

10.
Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au8-cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au8-cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au8-cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au8-cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au8-cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot.  相似文献   

11.
Xu K  Liu F  Ma J  Tang B 《The Analyst》2011,136(6):1199-1203
A novel fluorescent probe (C(60)-FL) was designed and synthesized for the direct determination of trypsin, based on photo-induced electron transfer (PET). The probe consists of two functional moieties: fluorescein which performs as a fluorophore and an electron donor, and fullerene (C(60)) which acts as an electron acceptor and trypsin substrate analogue. In the presence of trypsin, the probe exhibited fluorescence increase due to the inhibition of electron transfer by the combination of C(60)-FL with trypsin. The response of the probe to trypsin was direct and rapid. Experimental results showed that the increase in fluorescence intensity is proportional to the concentration of trypsin within the range of 4.40×10(-7) to 7.04×10(-5) g mL(-1) under the optimized experimental conditions. The detection limit of the proposed method was 40 ng mL(-1). The method had high selectivity for trypsin over other enzymes and proteins, such as lipase, α-amylase, bovine serum albumin, zinc metallothionein, glutathione reductase, thioredoxin and α-chymotrypsin etc. The remarkable properties of C(60)-FL help to extend the development of fluorescent probes for investigating enzymes in a biological context.  相似文献   

12.
Two closely related phenyl selenyl based boron‐dipyrromethene (BODIPY) turn‐on fluorescent probes for the detection of hypochlorous acid (HOCl) were synthesized for studies in chemical biology; emission intensity is modulated by a photoinduced electron‐transfer (PET) process. Probe 2 intrinsically shows a negligible background signal; however, after reaction with HOCl, chemical oxidation of selenium forecloses the PET process, which evokes a significant increase in fluorescence intensity. The fluorescence intensity of probes 1 and 2 with HOCl involves an ~18 and ~50‐fold enhancement compared with the respective responses from other reactive oxygen/nitrogen species (ROS/RNS) and low detection limits (30.9 nm for 1 and 4.5 nm for 2 ). Both probes show a very fast response with HOCl; emission intensity reached a maximum within 1 s. These probes show high selectivity for HOCl, as confirmed by confocal microscopy imaging when testing with RAW264.7 and MCF‐7 cells.  相似文献   

13.
Fluorescein is one of the best available fluorophores for biological applications, but the factors that control its fluorescence properties are not fully established. Thus, we initiated a study aimed at providing a strategy for rational design of functional fluorescence probes bearing fluorescein structure. We have synthesized various kinds of fluorescein derivatives and examined the relationship between their fluorescence properties and the highest occupied molecular orbital (HOMO) levels of their benzoic acid moieties obtained by semiempirical PM3 calculations. It was concluded that the fluorescence properties of fluorescein derivatives are controlled by a photoinduced electron transfer (PET) process from the benzoic acid moiety to the xanthene ring and that the threshold of fluorescence OFF/ON switching lies around -8.9 eV for the HOMO level of the benzoic acid moiety. This information provides the basis for a practical strategy for rational design of functional fluorescence probes to detect certain biomolecules. We used this approach to design and synthesize 9-[2-(3-carboxy-9,10-dimethyl)anthryl]-6-hydroxy-3H-xanthen-3-one (DMAX) as a singlet oxygen probe and confirmed that it is the most sensitive probe currently known for (1)O(2). This novel fluorescence probe has a 9,10-dimethylanthracene moiety as an extremely fast chemical trap of (1)O(2). As was expected from PM3 calculations, DMAX scarcely fluoresces, while DMAX endoperoxide (DMAX-EP) is strongly fluorescent. Further, DMAX reacts with (1)O(2) more rapidly, and its sensitivity is 53-fold higher than that of 9-[2-(3-carboxy-9,10-diphenyl)anthryl]-6-hydroxy-3H-xanthen-3-ones (DPAXs), which are a series of fluorescence probes for singlet oxygen that we recently developed. DMAX should be useful as a fluorescence probe for detecting (1)O(2) in a variety of biological systems.  相似文献   

14.
Compounds based on the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY) framework are excellent fluorescent markers. When BODIPY dyes of this type are conjugated to functionalities that absorb at relatively short wavelengths, those functionalities can, in some molecules, transmit the absorbed energy to the BODIPY which then fluoresces. In such cases the BODIPY fragment acts as an acceptor while the other group serves as a donor. Energy transfer efficiencies in such donor-acceptor cassette systems must vary with the relative orientation of the two components, and with the structure of the linkers that attach them. This study was designed to probe these issues for the special case in which the linkers between the donor and acceptor fragments are conjugated. To do this, the cassettes 3-10 were prepared. Electrochemical studies were performed to provide insight into the degree of donor-acceptor conjugation in these systems. X-ray Crystallographic studies on single crystals of compounds 7 and 9 revealed the favored conformations of the donor and acceptor fragments in the solid state. Absorption, fluorescence, and time-resolved fluorescence spectra of the compounds were recorded, and quantum yields for the cassettes excited at the donor lambda(max) were measured. Fluorescence steady-state anisotropy data were determined for cassettes 3 and 9 to provide information about the mutual direction of the transition dipole moments.  相似文献   

15.
A novel fluorescent probe that possess both BODIPY and Rhodamine moieties has been designed for the selective detection of Hg(2+) and Ba(2+) ions on the controlling by a logic gate. The characteristic fluorescence of the Ba(2+)-selective OFF-ON and the Hg(2+)-selective fluorescence bathochromic shift can be observed, and the concept has been used to construct a combinational logic circuit at the molecular level. These results will be useful for further molecular design to mimic the function of the complex logic gates on controlling.  相似文献   

16.
In donor–acceptor dyads undergoing photoinduced electron transfer (PET), a direction or pathway for electron movement is usually dictated by the redox properties and the separation distance between the donor and acceptor subunits, while the effect of symmetry is less recognized. We have designed and synthesized two isomeric donor–acceptor assemblies in which electronic coupling between donor and acceptor is altered by the orbital symmetry control with the reorganization energy and charge transfer exothermicity being kept unchanged. Analysis of the optical absorption and luminescence spectra, supported by the DFT and TD-DFT calculations, showed that PET in these assemblies corresponds to the Marcus inverted region (MIR) and has larger rate for isomer with weaker electronic coupling. This surprising observation provides the first experimental evidence for theoretically predicted adiabatic suppression of PET in MIR, which unambiguously controlled solely by symmetry.  相似文献   

17.
A small series of donor–acceptor molecular dyads has been synthesized and fully characterized. In each case, the acceptor is a dicyanovinyl unit and the donor is a boron dipyrromethene (BODIPY) dye equipped with a single styryl arm bearing a terminal amino group. In the absence of the acceptor, the BODIPY‐based dyes are strongly fluorescent in the far‐red region and the relaxed excited‐singlet states possess significant charge‐transfer character. As such, the emission maxima depend on both the solvent polarity and temperature. With the corresponding push–pull molecules, there is a low‐energy charge‐transfer state that can be observed by both absorption and emission spectroscopy. Here, charge‐recombination fluorescence is weak and decays over a few hundred picoseconds or so to recover the ground state. Overall, these results permit evaluation of the factors affecting the probability of charge‐recombination fluorescence in push–pull dyes. The photophysical studies are supported by cyclic voltammetry and DFT calculations.  相似文献   

18.
A new selective fluorescent probe for lead ions   总被引:1,自引:0,他引:1  
A new fluorescent probe(BPbl) for Pb~(2+) has been synthesized,where diethanolamine(receptor) is linked with 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene(BODIPY)(fluorophore) via a methylene group(spacer).The absorption(496 nm) and emission (505 nm) wavelengths are in visible range.The fluorescence quantum yields of the lead-free and lead-bound states of BPb_1 in acetonitrile are 0.013 and 0.693,respectively.The large chelation enhanced fluorescence effect(CHEF) with Pb~(2+) can be explained by the blocki...  相似文献   

19.
Our previous discovery suggested that substituents on the 1,7 positions delicately modulate the sensing ability of the meso-arylmercapto boron-dipyrromethene (BODIPY) to biothiols. In this work, the impact of delicate modulations on the sensing ability is investigated. Therefore, 1,7-dimethyl, 3,5-diaryl substituted BODIPY is designed and developed and its conformationally restricted species with a meso-arylmercapto moiety ( DM-BDP-SAr and DM-BDP-R-SAr ) as selective fluorescent probes for Cys. Moreover, the lysosome-target probes ( Lyso-S and Lyso-D ) based on DM-BDP-SAr carrying one or two morpholinoethoxy moieties were developed. They were able to detect Cys selectively in vitro with low detection limits. Both Lyso-S and Lyso-D localized nicely in lysosomes in living HeLa cells and exhibited red fluorescence for Cys. Moreover, a novel fluorescence quenching mechanism was proposed from the calculations by density functional theory (DFT). The probes may go through intersystem crossing (from singlet excited state to triplet excited state) to result in fluorescence quenching.  相似文献   

20.
Hydrogen sulfide (H2S) is recognized as an endogenous gaseous signaling agent in many biological activities. Lysosomes are the main metabolic site and play a pivotal role in cells. Herein, we designed and synthesized two new fluorescent probes BDP-DNBS and BDP-DNP with a BODIPY core to distinguish H2S. The sensing mechanism is based on the inhibition-recovery of the photo-induced electron transfer (PET) process. Through comparing the responsive behaviors of the two probes toward H2S, BDP-DNBS showed a fast response time (60 s), low limit of detection (LOD, 51 nM), high sensitivity and selectivity. Moreover, the reaction mechanism was demonstrated by mass spectrometry and fluorescence off-on mechanism was proved by density functional theory (DFT). Significantly, confocal fluorescence imaging indicated that BDP-DNBS was successfully used to visualize H2S in lysosomes in living HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号