首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the average supremum of some random Dirichlet polynomials D N (t) = Σ n=1 N ? n d(n)n ?σ?it , where (? n ) is a sequence of independent Rademacher random variables, the weights d(n) satisfy some reasonable conditions and 0 ≦ σ ≦ 1/2. We use an approach based on methods of stochastic processes, in particular the metric entropy method developed in [8].  相似文献   

2.
Let ξ, ξ0, ξ1, ... be independent identically distributed (i.i.d.) positive random variables. The present paper is a continuation of the article [1] in which the asymptotics of probabilities of small deviations of series S = Σ j=0 a(j j was studied under different assumptions on the rate of decrease of the probability ?(ξ < x) as x → 0, as well as of the coefficients a(j) ≥ 0 as j → ∞. We study the asymptotics of ?(S < x) as x → 0 under the condition that the coefficients a(j) are close to exponential. In the case when the coefficients a(j) are exponential and ?(ξ < x) ~ bx α as x → 0, b > 0, a > 0, the asymptotics ?(S < x) is obtained in an explicit form up to the factor x o(1). Originality of the approach of the present paper consists in employing the theory of delayed differential equations. This approach differs significantly from that in [1].  相似文献   

3.
For a set A of nonnegative integers the representation functions R2(A,n), R3(A,n) are defined as the number of solutions of the equation n=a+a,a,aA with a<a, a?a, respectively. Let D(0)=0 and let D(a) denote the number of ones in the binary representation of a. Let A0 be the set of all nonnegative integers a with even D(a) and A1 be the set of all nonnegative integers a with odd D(a). In this paper we show that (a) if R2(A,n)=R2(N?A,n) for all n?2N−1, then R2(A,n)=R2(N?A,n)?1 for all n?12N2−10N−2 except for A=A0 or A=A1; (b) if R3(A,n)=R3(N?A,n) for all n?2N−1, then R3(A,n)=R3(N?A,n)?1 for all n?12N2+2N. Several problems are posed in this paper.  相似文献   

4.
A group endomorphismα : G → G is said to beweakly shift equivalent to the group endomorphismβ : H → H if there existsh ∈ H such thatα is shift equivalent to Ad[h] °β. Given covering projectionsa : X → X, b : Y → Y of compact, connected, locally path connected, semilocally simply connected metric spaces with fixed pointsx 0X,y 0Y respectively, the inverse limits $$\begin{array}{l} \sum\nolimits_a { = \lim } (X,a) = \{ (x_i )_{i \in Z^ + } ax_{i + 1} = x_1 ,i \in Z^ + \} , \\ \sum\nolimits_a { = \lim } (Y,b) = \{ (y_i )_{i \in Z^ + } by_{i + 1} = y_1 ,i \in Z^ + \} , \\ \end{array}$$ and the “shift” mapsσ a : Σ a → Σ a ,σ b : Σ b → Σ b defined byσ a((x i)iZ +)=(x i+1)iZ + ∈ Σ a ,σ b((y i)iZ +)=(y i + 1)iZ + ∈ Σ b are considered. It is proven that ifσ a andσ b are topologically conjugate thena # :π 1(X, x 0) →π 1(X, x 0) is weakly shift equivalent tob # :π 1(Y, y 0) →π 1(Y, y 0). Furthermore, ifa : X → X andb : Y → Y are expanding endomorphisms of compact differentiable manifolds, weak shift equivalence is a complete invariant of topological conjugacy. The use of this invariant is demonstrated by giving a complete classification of the shifts of expanding maps on the klein bottle. The reader is referred to Section 4 of this work for a detailed statement of results.  相似文献   

5.
For the lower sigma-exponent of the linear differential system ? = A(t)x, xR n , t ≥ 0, defined by the formula Δσ(A) ≡ infλ[Q]≤-σ λ 1(A + Q), σ > 0, on the basis of the lower characteristic exponents λ 1(A+Q) of perturbed linear systems with Lyapunov exponents λ[Q] ≤ ?σ < 0 of perturbations Q, we prove the following general form as a function of the parameter σ > 0. For any nondecreasing bounded function f(σ) of the parameter σ ∈ (0,+∞) that coincides with a constant on some infinite interval (σ 0,+), σ 0 ≥ 0, and satisfies the Lipschitz condition on the complementary interval (0, σ 0], we prove the existence of a linear system with coefficient matrix A f (t) bounded on the half-line [0,+∞) whose lower sigma-exponent Δσ(A f ) coincides with the function f(σ) on the entire interval (0,+∞).  相似文献   

6.
In the space A (θ) of all one-valued functions f(z) analytic in an arbitrary region G ? ? (0 ∈ G) with the topology of compact convergence, we establish necessary and sufficient conditions for the equivalence of the operators L 1 n z n Δ n + ... + α1 zΔ+α0 E and L 2= z n a n (z n + ... + za 1(z)Δ+a 0(z)E, where δ: (Δ?)(z)=(f(z)-?(0))/z is the Pommier operator in A(G), n ∈ ?, α n ∈ ?, a k (z) ∈ A(G), 0≤kn, and the following condition is satisfied: Σ j=s n?1 α j+1 ∈ 0, s=0,1,...,n?1. We also prove that the operators z s+1Δ+β(z)E, β(z) ∈ A R , s ∈ ?, and z s+1 are equivalent in the spaces A R, 0?R?-∞, if and only if β(z) = 0.  相似文献   

7.
Let {[I?λA(t)]?1:0≦λ≦Λ, 0≦tT} be a family of resolvents of bounded linear m-dissipative operatorsA(t) on a Banach spaceX. Suppose that the map(λ,t,x←[IA(t)]?1 x is jointly continuous. Then we show it is not necessarily true that for eachx∈X: (1) the product integral lim n → ∞ Π i=1 n [I - (t/n)A(it/n)]?1 x exists, (2) the initial value problemy′(t)=A(t)y(t), y(0)=x has a strong solution.  相似文献   

8.
We study the nonlinear Sturm-Liouville problem $$ - u ''(x) = f(u(x)) - \mu u(x), 0< x< 1, u(0) = u(1) = 0.$$ Let (u n,(μ,x), μ), (n ωN) be a solution pair and α2 (μ)=∥μμ∥2. The purpose of this paper is to study the globalL 2-bifurcation, that is, to establish an asymptotic formula of αn(υ) as μ → ∞. Furthermore, we give an asymptotic formula ofu n(μ,x) as μ → ∞.  相似文献   

9.
If AT(m, N), the real-valued N-linear functions on Em, and σSN, the symmetric group on {…,N}, then we define the permutation operator Pσ: T(m, N) → T(m, N) such that Pσ(A)(x1,x2,…,xN = A(xσ(1),xσ(2),…, xσ(N)). Suppose Σqi=1ni = N, where the ni are positive integers. In this paper we present a condition on σ that is sufficient to guarantee that 〈Pσ(A1?A2???Aq),A1?A2?? ? Aq〉 ? 0 for AiS(m, ni), where S(m, ni) denotes the subspace of T(m, ni) consisting of all the fully symmetric members of T(m, ni). Also we present a broad generalization of the Neuberger identity which is sometimes useful in answering questions of the type described below. Suppose G and H are subgroups of SN. We let TG(m, N) denote all AT(m, N) such that Pσ(A) = A for all σ∈G. We define the symmetrizer SG: T(m, N)→TG(m,N) such that SG(A) = 1/|G|Σσ∈G Pσ(A). Suppose H is a subgroup of G and ATH(m, N). Clearly 6SG6(A) 6? 6A6. We are interested in the reverse type of comparison. In particular, if D is a suitably chosen subset of TH(m,N), then can we explicitly present a constant C>0 such that 6 SG(A)6?C6A6 for all AD?  相似文献   

10.
Let ? = 〈a, b|a[a, b] = [a, b]ab[a, b] = [a, b]b〉 be the discrete Heisenberg group, equipped with the left-invariant word metric d W (·, ·) associated to the generating set {a, b, a ?1, b ?1}. Letting B n = {x ∈ ?: d W (x, e ?) ? n} denote the corresponding closed ball of radius n ∈ ?, and writing c = [a, b] = aba ?1 b ?1, we prove that if (X, ‖ · ‖X) is a Banach space whose modulus of uniform convexity has power type q ∈ [2,∞), then there exists K ∈ (0, ∞) such that every f: ? → X satisfies $$\sum\limits_{k = 1}^{{n^2}} {\sum\limits_{x \in {B_n}} {\frac{{\left\| {f(x{c^k}) - f(x)} \right\|_X^q}}{{{k^{1 + q/2}}}}} } \leqslant K\sum\limits_{x \in {B_{21n}}} {(\left\| {f(xa) - f(x)} \right\|_X^q + \left\| {f(xb) - f(x)} \right\|_X^q)} $$ . It follows that for every n ∈ ? the bi-Lipschitz distortion of every f: B n X is at least a constant multiple of (log n)1/q , an asymptotically optimal estimate as n → ∞.  相似文献   

11.

Consider the scalar kth order linear difference equation: x(n + k) + pi(n)x(n + k - 1) + … + pk(n)x(n) = 0 where the limits qi=limn→∞Pi(n) (i=1,…,k) are finite. In this paper, we confirm the conjecture formulated recently by Elaydi. Namely, every nonzero solution x of (?) satisfies the same asymptotic relation as the fundamental solutions described earlier by Perron, ie., ?= lim supn→∞ |x(n)| is equal to the modulus of one of the roots of the characteristics equation χ k + q 1χ k?1+…+qk=0. This result is a consequence of a more general theorem concerning the Poincaré difference system x(n+1)=[A+B(n]x(n), where A and B(n) (n=0,1,…) are square matrices such that ‖B(n)‖ →0 as n → ∞. As another corollary, we obtain a new limit relation for the solutions of (?).  相似文献   

12.
Let ?(N) > 0 be a function of positive integers N and such that ?(N) → 0 and N?(N) → ∞ as N → + ∞. Let N(n:…) be the number of positive integers nN for which the property stated in the dotted space holds. Finally, let g(n; N, ?, z) be the number of those prime divisors p of n which satisfy NZ?(N) ? p ? N?(N), 0 < z < 1 In the present note we show that for each k = 0, ±1, ±2,…, as N → ∞, limvN(n : g(n; N, ?, z) ? g(n + 1; N, ?z) = k) exists and we determine its actual value. The case k = 0 induced the present investigation. Our solution for this value shows that the natural density of those integers n for which n and n + 1 have the same number of prime divisors in the range (1) exists and it is positive.  相似文献   

13.
The average number of distinct block sizes in a partition of a set of n elements is asymptotic to e log n as n → ∞. In addition, almost all partitions have approximately e log n distinct block sizes. This is in striking contrast to the fact that the average total number of blocks in a partition is ~n(log n)?1 as n → ∞.  相似文献   

14.
Using old results on the explicit calculation of determinants, formulae are given for the coefficients of P0(z) and P0(z)fi(z) ? Pi(z), where Pi(z) are polynomials of degree σ ? ρi (i=0,1,…,n), P0(z)fi(z) ? Pi(z) are power series in which the terms with zk, 0?k?σ, vanish (i=1,2,…,n), (ρ0,ρ1,…,ρn) is an (n+1)-tuple of nonnegative integers, σ=ρ0+ρ1+?+ρn, and {fi}ni=1 is the set of hypergeometric functions {1F1(1;ci;z)}ni=1(ci?Zz.drule;N, ci ? cj?Z) or {2F0(ai,1;z)}ni=1(ai ?Z?N, ai ? aj?Z) under the condition ρ0?ρi ? 1 (i=1,2,…,n).  相似文献   

15.
The asymptotic behavior asn → ∞ of the normed sumsσn =n ?1 Σ k =0n?1 Xk for a stationary processX = (X n ,n ∈ ?) is studied. For a fixedε > 0, upper estimates for P(sup k≥n ¦σ k ¦ ≥ε) asn → ∞ are obtained.  相似文献   

16.
We present some conditions which ensure that the solution Y(x) of the ordinary differential equation Y′(x) = A(x) Y(x), Y(x0) = I, where x0 ? x < ∞ and A(x), Y(x) are n × n complex matrix-valued functions with A(x) continuous, has a nonsingular limit as x → ∞.  相似文献   

17.
The univariate multiquadric function with centerx j R has the form {? j (x)=[(x?x j )2+c 2]1/2, x∈R} wherec is a positive constant. We consider three approximations, namely, ? A f, ?? f, and ? C f, to a function {f(x),x 0xx N } from the space that is spanned by the multiquadrics {? j :j=0, 1, ...,N} and by linear polynomials, the centers {x j :j=0, 1,...,N} being given distinct points of the interval [x 0,x N ]. The coefficients of ? A f and ?? f depend just on the function values {f(x j ):j=0, 1,...,N}. while ? A f, ? C f also depends on the extreme derivativesf′(x 0) andf′(x N ). These approximations are defined by quasi-interpolation formulas that are shown to give good accuracy even if the distribution of the centers in [x 0,x N ] is very irregular. Whenf is smooth andc=O(h), whereh is the maximum distance between adjacent centers, we find that the error of each quasi-interpolant isO(h 2|logh|) away from the ends of the rangex 0xx N. Near the ends of the range, however, the accuracy of ? A f and ?? f is onlyO(h), because the polynomial terms of these approximations are zero and a constant, respectively. Thus, some of the known accuracy properties of quasiinterpolation when there is an infinite regular grid of centers {x j =jh:jF} given by Buhmann (1988), are preserved in the case of a finite rangex 0xx N , and there is no need for the centers {x j :j=0, 1, ...,N} to be equally spaced.  相似文献   

18.
We address the analysis of the following problem: given a real Hölder potential f defined on the Bernoulli space and μ f its equilibrium state, it is known that this shift-invariant probability can be weakly approximated by probabilities in periodic orbits associated to certain zeta functions. Given a Hölder function f > 0 and a value s such that 0 < s < 1, we can associate a shift-invariant probability ν s such that for each continuous function k we have $ \int {kd} v_s = \frac{{\sum\nolimits_{n = 1}^\infty {\sum\nolimits_{x \in Fix_n } {e^{sf^n (x) - nP(f)\frac{{k^n (x)}} {n}} } } }} {{\sum\nolimits_{n = 1}^\infty {\sum\nolimits_{x \in Fix_n } {e^{sf^n (x) - nP(f)} } } }}, $ , where P(f) is the pressure of f, Fix n is the set of solutions of σ n (x) = x, for any n ∈ ?, and f n (x) = f(x) + f(σ (x)) + … + f(σ n?1(x)). We call νs a zeta probability for f and s, because it can be obtained in a natural way from the dynamical zeta-functions. From the work of W. Parry and M. Pollicott it is known that ν s → µ f , when s → 1. We consider for each value c the potential c f and the corresponding equilibrium state μ cf . What happens with ν s when c goes to infinity and s goes to one? This question is related to the problem of how to approximate the maximizing probability for f by probabilities on periodic orbits. We study this question and also present here the deviation function I and Large Deviation Principle for this limit c → ∞, s → 1. We will make an assumption: for some fixed L we have lim c→∞, s→1 c(1 ? s) = L > 0. We do not assume here the maximizing probability for f is unique in order to get the L.D.P.  相似文献   

19.
The author discusses the asymptotic behavior of the solutions of the functional differential equation x′(t) = Ax(λt) + Bx(t), λ>0 (1) where x(t) is an n-dimensional column vector and A, B are n × n matrices with complex constant entries. He obtains the following results for the case 0 < λ < 1: (i) If B is diagonalizable with eigenvalues bi such that Re bi < 0 for all i, then there is a constant α such that every solution of (1) is O(tα) as t → ∞. (ii) If B is diagonalizable with eigenvalues bi such that 0 < Re b1 ? Re b2 ? ··· ? Re bn and λ times Re bn < Re b1, then every solution of (1) is O(ebnt) as t → ∞. For the case λ>1, he has the following results: (i) If B is diagonalizable with eigenvalues bi such that Re bi>0 for all i, then there is a constant α such that no solution x(t) of (1), except the identically zero solution, is 0(tα) as t → ∞. (ii) If B is diagonalizable with eigenvalues bi such that Re b1 ? Re b2 ? ··· ? Re bn < 0 and λ Re bn < Re b1, then no solution x(t) of (1), except the identically zero solution, is 0(eb1t) as t → ∞.  相似文献   

20.
We prove that approximate solutions of the Riccati equation ?′ + ?2 = a(x) yield asymptotic solutions y = ex?(s)ds of the second order linear equation y″ = a(x)y. We show that the iterative scheme ?0 = a, ?n + 12 = a ? ?n′ leads to asymptotic solutions of the cited linear equation in many interesting cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号