首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
63Ni diffusion measurements on single crystalline nickel oxide have been performed at temperatures between 1073 and 1373 K and in partial pressures of oxygen equal to the NiO dissociation pressure. In such conditions, the intrinsic defect content is very low and the preponderant defect consists in doubly ionized nickel vacancies (V″).Diffusion coefficient values lead to the result
Dv(cm2s?1) = 5.2510?6exp ( ?154 kJ mol?1RT)
The activation energy thus determined agrees with the value of the migration enthalpy of the doubly ionized nickel vacancy. Thus, it appears that under such experimental conditions, the vacancy content is determined by the impurity content.  相似文献   

2.
The transient absorption of microwaves has been used for studying recombination kinetics in silicon at low temperature. We have identified a second order process imputable to free exciton formation from injected electrons and holes. We have obtained the experimental binding coefficient for excitons:
γe=0.9 10?3T?2cm3/sec
This result agrees with Nolle theoretical formula [1].  相似文献   

3.
The sound velocities in GeS2 glass have been measured by means of ultrasonic interferometry as a function of temperature or pressure up to 1.8 kbar. The bulk modulus Ks = 117.6 kbar and shear modulus G = 60.60 kbar were obtained for GeS2 glass at 15°C and 1 atm. The temperature derivatives of both sound velocities and elastic moduli are negative :
(1?T)
p =
?1.54 × 10?4 kmsec
°C,
(1?T)
p =
?1.27× 10?4 kmsec
°C and
(?Ks?T)
p =
?1.27 × 10?2kbar°C
,
(?G?T)
p = ?1.23 × 10?2 kbar/°C,
(?Y?T)
p = ?2.93 × 10?2 their pressure derivatives are positive:
(1?P)
T = 4.43× 10?2km/kbar,
(1?P)
T =
0.633 × 10?2kmkbar
and (?Ks?P0)T=6.81,
(?G?P)T
= 1.03, (?Y?TT= 3.57. The Grüneisen parameter, γth= 0.298, and the second Grüneisen parameter, δs = 3.27, have also been calculated from these data. The elastic behavior of GeS2 glass has proved to be normal despite the structural similarity among the tetrahedrally coordinated SiO2, GeO2 and GeS2 glasses.  相似文献   

4.
Concentration dependent diffusion coefficients for 45Ca2+ and 85Sr2+ in purified KCl were measured using a sectioning method. KCl was purified by an ion exchange — Cl2?HCl process and the crystals grown under 16 atmosphere of HCl. The tracers were purified on small disposable ion exchange columns to remove precessor and daughter impurities prior to use in a diffusion anneal. Isothermal diffusion anneals were made in the temperature range from 451% to 669%C. At temperatures above 580%C (the lowest melting eutectic in this system) diffusion was from a vapor source: below 580%C surface depositied sources were used. The saturation diffusion coefficients. enthalpies and entropies of impurity-vacancy associations were calculated using the common ion model for simultaneous diffusion of divalent ions in alkali halides. In KCl the saturation diffusion coefficients DS(ca) and Ds(Sr) are given by
Ds(Ca) = 9.93 × 10?5 exp(?0.592 eVkT)cm2sec
(1) and
Ds(Sr) = 1.20 × 10?3 exp(?0.871 eVkT)cm2sec
(2) for calcium and strontium, respectively. The Gibbs free energy of association of the impurity vacancy complex in KCl for calcium can be represented by
Δg(Ca) = ?-0.507 eV + (2.25 × 10?4eV%K)T
(3) and that for strontium by
Δg(Sr) = ?0.575 eV + (2.90 × 10?4eV%K)T
. (4)  相似文献   

5.
The self-diffusion of 44Ti has been measured both parallel to and perpendicular to the c axis in rutile single crystals by a serial-sectioning technique as a function of temperature (1000–1500°C) and oxygen partial pressure (10?14 ? 1 atm). The oxygen-partial-pressure dependence of. D1Ti indicates that cation selfdiffusion occurs by an interstitial-type mechanism and that both trivalent and tetravalent interstitial titanium ions may contribute to cation self-diffusion. At po2 = 1.50 × 10?7 atm where impurity-induced defects are unimportant,
D1Ti(∥c)=6.50+1.33?1.11exp?(66.11±0.56 kcalmoleRTcm2S
and
D1Ti(⊥c)= 4.55+1.78?1.28exp?(64.08±0.99)kcalmoleRTcm2S.
In the intrinsic region, the ratio D1Ti (⊥c)/D1Ti(∥c) was found to increase from 1.2 to 1.6 as the temperature decreased from 1500 to 1000°C. Computations based upon the defect model of Kofstad (involving the atomic defects Ti...iTi....iand V..o), of Marucco etal. (Ti....i and V..o), and of Blumenthal etal. (Ti...i and Ti....i) are compared with the experimental data on deviation from stoichiometry, electrical conductivity, cation self-diffusion and chemical diffusion in TiO2?x. These comparisons provide values of the defect concentrations, cation-defect diffusivities, electron mobility and reasonable values of the correlation factor for cation diffusion by the interstitialcy mechanism. Only the model of Kofstad is inconsistent with the data.  相似文献   

6.
The self-diffusion of 95Nb in single crystals of NbC0.868, NbC0.834 and NbC0.766 has been studied in the range of 2370–2660K. The diffusion coefficients are composition independent and can be described by the expression:
D1Nb = (4.54 + 2.85?1.75) exp(?(140.0 ±2.4 kcalmole)RT)cm2sec
An analysis of the results indicates that Nb diffuses by an (0-0) mechanism, just as a pure metal diffuses in a f.c.c. lattice, wherein the atom migrates from its lattice position directly to an analogous vacant site. As this process involves the energies of both migration and Nb vacancy formation, the slower diffusion rates of this species, relative to that of C whose mechanisms of transport involve only the energy of migration, are thus explained.  相似文献   

7.
The ν3 fundamental vibration-rotation band of carbon-13 enriched methane (13CH4) was recorded using a high-resolution vacuum infrared grating spectrograph. Forbidden transitions of this band are reported for the first time. Of the nearly 900 transitions identified, 560 are forbidden transitions and 347 of the forbidden transitions have 11 ≤ J ≤ 18. Pairs of forbidden and allowed transitions having the same upper-state energy levels were used to calculate 550 independent differences between ground-state term values. From these data, a least-squares analysis was used to calculate the following values for ground-state structure constants and their standard deviations (in cm?1):
βOhc = 5.240820 ± 0.000056
,
λOhc =?(1.0856 ± 0.0015) × 10?4
,
?Ohc = ?(1.4174 ± 0.0034) × 10?4
,
ηhc = ?(1.73 ± 0.37) × 10?11
. The 550 values for the ground-state combination differences retained for analysis can be reproduced with an overall standard deviation of 0.0155 using the stated values for the structure constants. The note added in proof refines the above constants by including the newly observed microwave data.  相似文献   

8.
Using electrical conductivity measurements in the temperature range 650–1100°C and for oxygen pressure greater than 10?6atm., the variation of the chemical diffusion coefficient in cuprous oxide with temperature has been determined as:
D? = 1.2 10?3exp (? 7800RT) cm2 sec?1
.Taking into account the nature of the prevailing defects in cuprous oxide one can show that D? ?DCu[VxCu]. This relation permits the results to be compared with those determined by tracer diffusivities. Using a value for the enthalpy of formation of non ionized copper vacancies in the range 12–16 kcal mol?1, the results are shown to be in agreement with the value of the activation enthalpy for self-diffusion of copper of 24 kcal mol?.  相似文献   

9.
The self-diffusion coefficient increases under hydrostatic pressure in γ f.c.c. cerium as in δ b.c.c. cerium. The volume of activation for self-diffusion is negative: ΔV = ?3 cm3mol or ?15% mol. vol.These results are in good agreement with Nachtrieb's empirical correlation between the volume of activation and melting point.  相似文献   

10.
The self-diffusion coefficients of 14C in NbCx single crystals have been measured as a function of composition in the temperature range 1900–2315 K, and can be represented by the expressions
D1C(NbC0.868) = (2.59?1.07+1.82) exp (?100.42 ± 2.2 kcalmolRT)cm2s
D1C(NbC0.834) = (7.44?4.14+9.36) exp (?105.0 ± 3.3 kcalmolRT)cm2s
D1C(NbC0.766) = (2.22?1.04+1.98) × 10?2exp (?76.02 ± 2.7 kcalmolRT)cm2s
The lower values of the activation energy and the pre-exponential term in NbC0.766 are attributed to a change in the path of C mass transport from that of an octahedral-tetrahedral-octahedral mechanism in NbC0.868 and NbC0.834 involving a C-metal divacancy mechanism. The effect of lattice geometry and the electronic charge distribution on the diffusion mechanism is also discussed.  相似文献   

11.
The serial sectioning method, used to study solute diffusion of 60Co in f.c.c. δ plutonium, gives the following results:
D = 1,2.10?2 exp(?12700RT) cm2s
in the temperature range 344–426°C.Cobalt is a very fast solute in δ plutonium. It diffuses most likely by a dissociative interstitial mechanism in a matrix where self diffusion takes place by a vacancy mechanism.  相似文献   

12.
Self-diffusion of 59Fe parallel to the c axis in single crystals of Fe2O3 has been measured as a function of temperature (1150–1340°C) and oxygen partial pressure (2 × 10?3 ? pO2 ? 1 atm) The temperature dependence of the cation diffusivity in air is given by the expression
DFe1 = (1.9?1.4+5.2 × 109exp(?141.4 ± 4.0 kcal/moleRT) cm2/s
.The unusually large value of D0 is interpreted in terms of the values of the preexponential terms in the reaction constants for the creation of defects in Fe2O3. The oxygen-partial-pressure dependence of the diffusivity indicates that cation self-diffusion occurs by an interstitial-type mechanism The simultaneous diffusion of 52Fe and 59Fe has been measured in Fe2O3. The small value of the isotope effect suggests that iron ions diffuse by an noncollinear interstitialcy mechanism, which is consistent with the crystal structure of Fe2O3.  相似文献   

13.
Elastoresistances of TCNQ high conducting salts have been measured at room temperature by an original strain gauge technique. The effects, on the longitudinal and transverse resistivities ?, of an elementary uniaxial strain ? applied along one of the three axes, a, b or c1 respectively, have been estimated.For TTF-TCNQ, they are:
Kba =? ln ?b/??a = 16±3
;
Kbb = ? ln αb/??b = 34±4
;
Kbc1 =? ln ?/??c1= 24±8
(5% risk).So, in an hydrostatic pressure experiment, the fraction of piezoresistivity attributable to transverse effects is 43± 10% of the total value χb (Kba and Kbc effects accumulated).Low values have been found for the anisotropy (?a/?b) variations due to strains. So one may write:
Kaa = ? ln ?a/??a≌Kab
;
Kab = ? ln ?a/??b≌ Kbb
;
Kac1 = ? ln ?a/??c1 ≌Kbc1
.The TTF-, HMTTF-, TSF-, HMTSF-TCNQ elastoresistance values are coherent with the previously measured hydrostatic pressure piezoresistivity values.All these experimental results are in good agreement with a model where the longitudinal but also the transverse elastoresistivities are essentially due to variations with strains of the longitudinal scattering time τν defined by σb = ne2τν/m1.  相似文献   

14.
It is shown that for spinorial charges Q(L))α (α = 1, 2, L = 1, …, S) satisfying the commutation relations
{Q(L)α, Q(M)β} = εαβaLMQ,
{Q(L)α, Q(M)+β} = cσμαβPμδLM,
[Q(L))α, Pμ] = 0,
where Q is a scalar charge commuting with the spinor charges as well aswith the energy- momentum vector Pμ, there can exist several different multiplets for free massive scalar and spinor fields.  相似文献   

15.
The permeability time-lag method has been used to measure the temperature dependence of the diffusivity of hydrogen in platinum in the temperature range 558–936°C. In this temperature range the diffusivity D was found to be represented by the Arrhenius relation,
D = (6.47±1.73) × 10?7exp?QRTm2sec
where Q = 26.3 ± 2.3 kJmol.Measurements of the absolute permeation flux in the steady state condition yield values for the permeability coefficient and the solubility. The solubility values obtained from the permeability flux determinations show discrepancies when compared to solubilities determined by direct equilibration techniques. This discrepancy is briefly discussed.  相似文献   

16.
For free and interacting Hamiltonians, H0 and H = H0 + V(r) acting in L2(R3, dx) with V(r) a radial potential satisfying certain technical conditions, and for ? a real function on R with ?′ > 0 except on a discrete set, we prove that the Moller wave operators
Ω± = strong limit eit?(H) e?it?(H0)
exist and are independent of ?. The scattering operator
S = (Ω+)1Ω?
is shown to be unitary. Our proof utilizes time independent methods (eigenfunction expansions) and is effective in cases not previously analyzed, e.g. V(r) = sinrr and many others.  相似文献   

17.
The infrared spectrum of yttrium monoiodide has been excited in an electrodeless microwave discharge and explored between 2500 and 12 000cm?1 with a high-resolution Fourier transform spectrometer. A unique system is observed (ν00 = 9905.520 cm?1), which we attribute to a 1Π1Σ transition and an extensive analysis is made. Rovibrational constants are obtained for both states mainly from a simultaneous multiband fitting. This procedure is applied to the whole set of 2231 observed line wavenumbers in the 1-0, 0-0, and 0–1 bands, yielding a final weighted standard deviation of 0.0038 cm?1. Furthermore, a partial analysis of the 2-0 and 3-1 bands is performed. The following equilibrium constants are derived (cm?1):
ω′e=192.210 ω′ex′e=0.463
B′e=0.0399133 α′e=0.0001150
ω″e=215.815 ω″ex″e=0.514
B″e=0.0422163 α″e=0.0001125
High-order constants Dv and Hv are also calculated for the various vibrational levels (v′ = 0, 1, 2, 3; v″ = 0, 1).  相似文献   

18.
A rotational analysis of the satellite bands of the β system of ZrO gives the splittings in the triplet states. For the lowest triplet state X3Δ, these splittings are:
δF1,2 = 287.9 ± 0.1 cm?1,
δF2,3 = 337.6 ± 0.4 cm?1.
  相似文献   

19.
The production of a strange dibaryonic system called H+1 (M = 2.13 GeV/c2, S = ?1), has been studied with a missing mass spectrometer, at the CERN Proton Synchrotron, in the reaction K?d → π?H+1 and in the line-reversed reaction π+d → K+H+1 between 0.9 and 1.4 GeV/c.The reactions
K?d → π?X+
,
πdK+X+
,have been studied in a missing mass spectrometer at CERN. The experiment (PS159) is well adapted to search for a signal in the missing mass X+ (B = 2, S = ?1) produced in the backward c.m.s. direction, between 2.0 and 2.3 GeV/c2. The two reactions have been analysed at three different beam settings: 1.4, 1.06 and 0.92 GeV/c for reaction (1) and 1.4, 1.2 and 1.06 GeV/c for reaction (2).  相似文献   

20.
The investigation of the emission infrared spectrum of P2 was performed with a high resolution Fourier spectrometer. Two new electronic systems were attributed to b3Πgw3Δu and A1ΠgW1Δu transitions. The molecular parameters are obtained by a complete fitting procedure. The main equilibrium constants of the new states are (in cm?1):
ω3Δu Te = 243228.07 ωe = 591.3 ωeXe = 2.5
Be = 0.256040 δe = 0.001409 De = 19.0 X 10?8
W1ΔuTe = 31096.64 We = 627.206 WeXe = 2.331
Be = 0.2628 δe = 0.0014 De = 23 X 10?8
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号