首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction of heptagons into hexagonal carbon lattices can generate negatively curved polycyclic aromatic hydrocarbons, which are of significant interest in the field of exotic molecular nanocarbons. We have successfully synthesized and characterized corannulene‐based π‐systems containing heptagons ( 4 and 5 ) as new negatively curved polycyclic aromatic hydrocarbons as well as possible intermediates in the synthesis of warped nanographene 1 . The formation of 4 and 5 represents the first example for which a heptagon is formed under Scholl reaction conditions before all hexagons are formed. Even more interestingly, we discovered that the mode and degree of solid‐phase intermolecular π–π interaction can be altered significantly by the degree of ring closure.  相似文献   

2.
We describe an optimized algorithm for finding all symmetry-distinct maps of a given graph. It contains significant improvements on the computing time by representing the maps as linear codes. In this way, the time consuming step of removing equivalent maps can be solved more efficiently by searching for a “minimal code”. As an example we apply the algorithm to the 32-vertex Dyck-graph for which more than 4 billion cases should be investigated. One of its most symmetrical maps forms an interesting blueprint for a hypothetical negatively curved carbon allotrope of genus 3.  相似文献   

3.
Carbon nanomaterials have been at the forefront of nanotechnology since its inception. At the heart of this research are the curved carbon nanomaterial families: fullerenes and carbon nanotubes. While both have incredible properties that have been capitalized upon in a wide variety of applications, there is an aspect that is not commonly exploited by nanoscientists and organic chemists alike: the interaction of curved carbon nanomaterials with curved organic small molecules. By taking advantage of these interactions, new avenues are opened for the use of fullerenes and carbon nanotubes.  相似文献   

4.
A new strategy is demonstrated for the synthesis of warped, negatively curved, all‐sp2‐carbon π‐scaffolds. Multifold C?C coupling reactions are used to transform a polyaromatic borinic acid into a saddle‐shaped polyaromatic hydrocarbon ( 2 ) bearing two heptagonal rings. Notably, this Schwarzite substructure is synthesized in only two steps from an unfunctionalized alkene. A highly warped structure of 2 was revealed by X‐ray crystallographic studies and pronounced flexibility of this π‐scaffold was ascertained by experimental and computational studies. Compound 2 exhibits excellent solubility, visible range absorption and fluorescence, and readily undergoes two reversible one‐electron oxidations at mild potentials.  相似文献   

5.
The Weierstrass representation has been used to construct negatively curved graphite in which atoms rest no a perfect triply periodic minimal surface. By applying the Bonnet transformation on a patch of the D surface decorated with graphite we have been able to construct the Gyroid and P minimal surfaces. Curvatures, densities and lattice parameters have been calculated. It has been found that the maximum Gaussian curvature for our negatively curved structures is less in magnitude than the Gaussian curvature ofC 60. In addition, a new periodic graphitic set with the same topology as the I-WP minimal surface has been obtained by introducing pentagonal and octagonal rings.  相似文献   

6.
Kekule structures of different carbon species have been determined. On the basis of Kekule structure and C-C bond counts as well as the surface curvature, stability of diverse carbon species, driving force for curling of graphite fragments and formation of fullerenes and nanotubes, have been discussed. Curling of graphite flat fragments, end-capping of nanotubes, and closure of curved structures are driven by a tremendous increase in Kekule structures as terminal carbon atoms couple their dangling bonds into C-C o bonds. The increasing tendency becomes particularly striking for large cages and nanotubes. Resonance among numerous Kekule structures will stabilize the curved structure and dominate formation of closed carbon species. For similar carbon cages with comparable Kekule structure counts in magnitude, the surface curvature of carbon cages, as a measure for the strain energy, also plays an important role in determining their most stable forms.  相似文献   

7.
Cylinder-shaped graphitic networks in carbon nanotubes have attracted interest from scientists in various disciplines. The chemical synthesis of segments thereof is considered as a challenging and appealing subject in chemistry, and deepens our understanding of curved and conjugated arrays of hexagons. We herein report the synthesis of cylinder-shaped molecules containing non-hexagon bridges in their conjugated systems. Multiple pentagon units were embedded in the cylinder-shaped discrete molecules, and the stereoisomerism originating from their helical carbon arrangements was studied. Structural analysis by NMR, UV/Vis absorption spectroscopy, and single-crystal X-ray diffraction provided fundamental experimental information on the curved systems with conjugation across the pentagons. This study provides the first experimental guide for further explorations of anomalous non-hexagon arrays of graphitic carbon materials with cylindrical shapes.  相似文献   

8.
Several carbon materials were produced by reacting aluminum carbide with chlorine gas at different temperatures (400–900 °C). Chlorination temperature and porosity values showed the inversely related trends whereby the graphitization degree rises with the chlorination temperature. Electrochemical measurements performed in three-electrode test cells with 1.0-M Et3MeNBF4 electrolyte revealed that the changes in porosity parameters and the degree of graphitization are in good correlation with specific capacitance values. Capacitance depends on the structure of carbon and varies in studied chlorination range from 109 to 60 F g−1 and from 114 to 64 F g−1 for the negatively and positively charged electrode materials, respectively. An exceptionally low capacitance was observed for the material produced at 700 °C that was explained by the multiwall carbon nanobarrels and the highly ordered curved graphitic flakes, which have low specific surface and possess the relatively low specific surface-related capacitance.  相似文献   

9.
Cylinder‐shaped graphitic networks in carbon nanotubes have attracted interest from scientists in various disciplines. The chemical synthesis of segments thereof is considered as a challenging and appealing subject in chemistry, and deepens our understanding of curved and conjugated arrays of hexagons. We herein report the synthesis of cylinder‐shaped molecules containing non‐hexagon bridges in their conjugated systems. Multiple pentagon units were embedded in the cylinder‐shaped discrete molecules, and the stereoisomerism originating from their helical carbon arrangements was studied. Structural analysis by NMR, UV/Vis absorption spectroscopy, and single‐crystal X‐ray diffraction provided fundamental experimental information on the curved systems with conjugation across the pentagons. This study provides the first experimental guide for further explorations of anomalous non‐hexagon arrays of graphitic carbon materials with cylindrical shapes.  相似文献   

10.
All previously reported C70 isomers have positive curvature and contain 12 pentagons in addition to hexagons. Herein, we report a new C70 species with two negatively curved heptagon moieties and 14 pentagons. This unconventional heptafullerene[70] containing two symmetric heptagons, referred to as dihept‐C70, grows in the carbon arc by a theoretically supported pathway in which the carbon cluster of a previously reported C66 species undergoes successive C2 insertion via a known heptafullerene[68] intermediate with low energy barriers. As identified by X‐ray crystallography, the occurrence of heptagons facilitates a reduction in the angle of the π‐orbital axis vector in the fused pentagons to stabilize dihept‐C70. Chlorination at the intersection of a heptagon and two adjacent pentagons can greatly enlarge the HOMO–LUMO gap, which makes dihept‐C70Cl6 isolable by chromatography. The synthesis of dihept‐C70Cl6 offers precious clues with respect to the fullerene formation mechanism in the carbon‐clustering process.  相似文献   

11.
The synthesis of sterically crowded tribenzotriquinacenes with complete and partial methylation of the ortho-positions has been achieved using the double cyclodehydration strategy. This leads to a twisted tribenzotriquinacene core and enables further functionalization for the future synthesis of curved model compounds for defective carbon networks.  相似文献   

12.
The glycolipid transfer protein (GLTP) is monomeric in aqueous solutions, and it binds weakly to membrane interfaces with or without glycolipids. GLTP is a surface-active protein and adsorbs to exert a maximal surface pressure value of 19 mN/m. The change in surface pressure following GLTP adsorption decreased linearly with initial surface pressure. The exclusion pressure for different phospholipids and sphingolipids was between 23 and 31 mN/m, being clearly highest for the negatively charged dipalmitoyl-phosphatidylserine. This can be explained by electrostatic forces when GLTP is positively charged at neutral pH (isoelectric point = 9.0) and by phosphatidylserine being negatively charged. If GLTP is injected under a palmitoyl-galactosylceramide monolayer above 30 mN/m, the presence of GLTP leads to a decrease in the surface pressure as a function of time. This suggests that GLTP is able to remove glycolipids from the monolayer without penetrating the monolayer. On the other hand, if phospholipid vesicles with or without glycolipids are also present in the subphase, no change in the surface pressure takes place. This suggests that GLTP in the presence of curved membranes is not able to transfer from or to planar membranes. We also show that transfer of fluorescently labeled galactosylceramide is faster from small highly curved palmitoyl-oleoyl-phosphatidylcholine and dipalmitoyl-phosphatidylcholine bilayer vesicles but not from palmitoyl-sphingomyelin vesicles regardless of the size.  相似文献   

13.
A new technique is described for obtaining thin specimens from melt-crystallized polyethylene surface for studying the lamellar structure with the electron microscope. The specimen was first backed with carbon–gelatin backing and then the polyethylene side was exposed to a temperature-controlled xylene stream. After dissolving most of the specimen, a very thin layer of polyethylene which shows certain aspects of the original lamellar structure was obtained. Stereoscopic micrographs revealed the structure of polyethylene consisting of curved layers, concave, convex and other forms. These curved layers were identified by analysis of the Bragg fringes to be the crystalline lamellae. A special pattern resembling a spider in shape caused by a spherical crystal was investigated.  相似文献   

14.
Carbon nanofibers are grown homogeneously on a large area of nickel-deposited sodalime glass substrate by thermal chemical vapor deposition of acetylene at 500°C. The diameters of carbon nanofibers are uniformly distributed in the range between 50 and 60 nm. Most of the carbon nanofibers are curved or bent in shape, but some fractions are twisted. They consist of defective graphitic sheets with a herringbone morphology. The maximum emission current density from the carbon nanofibers is 0.075 mA/cm2 at 16 V/μm, which is sufficient for commercializing the carbon-nanofibers-based field emission displays.  相似文献   

15.
This study presents synthesis and characterizations of two novel curved nanographenes that strongly bind with fullerene C60 to form photoconductive heterojunctions. Films of the self‐assembled curved nanographene/fullerene complexes, which served as the photoconductive layer, generated a significant photocurrent under light irradiation. Gram‐scale quantities of these curved nanographenes (TCR and HCR) as the “crown” sidewalls can be incorporated into a carbon nanoring to form molecular crowns, and the molecular structure of C60@TCR is determined by single‐crystal X‐ray diffraction. The UV/Vis absorption and emission spectra, and theoretical studies revealed their unique structural features and photophysical properties. Time‐resolved spectroscopic results clearly suggest fast photoinduced electron transfer process in the supramolecular heterojunctions.  相似文献   

16.
A diamide molecule bearing a biotin terminus was bonded via an amide linkage to the surface of an aminated single-walled carbon nanotube and examined by a high-resolution transmission electron microscope. The still and movie images allowed us to study not only the conformation of the molecule but also its time evolution. An iterative sequence of modeling and simulation allowed us to assign one plausible conformation out of >10(8) possibilities. The images also provide direct support for the accepted wisdom that the curved regions of pristine carbon nanotubes are chemically reactive.  相似文献   

17.
A negatively curved aza-nanographene (NG) containing two octagons was synthesized by a regioselective and stepwise cyclodehydrogenation procedure, in which a double aza[7]helicene was simultaneously formed as an intermediate. Their saddle-shaped structures with negative curvature were unambiguously confirmed by X-ray crystallography, thereby enabling the exploration of the structure–property relationship by photophysical, electrochemical and conformational studies. Moreover, the assembly of the octagon-embedded aza-NG with fullerenes was probed by fluorescence spectral titration, with record-high binding constants (Ka=9.5×103 M−1 with C60, Ka=3.7×104 M−1 with C70) found among reported negatively curved polycyclic aromatic compounds. The tight association of aza-NG with C60 was further elucidated by X-ray diffraction analysis of their co-crystal, which showed the formation of a 1 : 1 complex with substantial concave-convex interactions.  相似文献   

18.
The interaction of ethylene with a Pt(111) single-crystal surface was studied using X-ray photoelectron spectroscopy. It was found that both two-dimensional flat graphite islands and curved fullerene-like carbon structures or nanotubes can be formed depending on the reaction temperature of ethylene and the presence of dissolved carbon in the bulk of the crystal. It was assumed that the size and curvature of the islands depend on the size of terraces on the single-crystal surface.  相似文献   

19.
A mimetic porous carbon model is generated using quench molecular dynamics simulations that reproduces experimental radial distribution functions of activated carbon. The resulting structure is composed of curved and defected graphene sheets. The curvature is induced by nonhexagonal rings. The quench conditions are systematically varied and the final porous structure is scrutinized in terms of its pore size distribution, pore connectivity, and fractal dimension. It is found that the initial carbon density affects the fractal dimension but only causes a minor shift in the pore size distribution. On the other hand, the quench rate affects the pore size distribution but only causes a minor shift in the fractal dimension.  相似文献   

20.
Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positively charged, mesoporous wood-based carbons, as well as with a microporous coconut carbon. To this end, we glued carbon particles to the cantilever of an atomic force microscope and measured the interaction forces upon approach and retraction of thus made tips. Waterborne Raoultella terrigena and Escherichia coli adhered weakly (1-2 nN) to different activated carbon particles, and the main difference between the activated carbons was the percentage of curves with attractive sites revealed upon traversing of a carbon particle through the bacterial EPS layer. The percentage of curves showing adhesion forces upon retraction varied between 21% and 69%, and was highest for R. terrigena with positively charged carbon (66%) and a coconut carbon (69%). Macroscopic bacterial removal by the mesoporous carbon particles increased with increasing percentages of attractive sites revealed upon traversing a carbon particle through the outer bacterial surface layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号