首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SiO2交联剂交联MMA聚合制备PMMA/SiO2纳米复合材料   总被引:3,自引:0,他引:3  
欧宝立  李笃信 《化学通报》2006,69(6):415-420
用SiO2交联剂(SiO2HPA)交联甲基丙烯酸甲酯(MMA)自由基聚合制备PMMA SiO2纳米复合材料。采用两步法将可聚合乙烯基单体以化学键的形式键接到SiO2表面合成SiO2交联剂,首先利用过量的甲苯2,4二异氰酸酯(TDI)对SiO2纳米粒子表面进行化学修饰合成出表面带有高反应活性NCO基团的功能化SiO2粒子(SiO2TDI),SiO2TDI与丙烯酸羟丙酯(HPA)反应合成SiO2交联剂。系统研究了MMA单体与SiO2交联剂投料比及聚合时间对聚合反应的影响。此外,利用红外光谱(FT IR)、DSC、TGA、可见光光谱仪等实验手段对纳米复合材料进行了表征分析。结果表明,纳米SiO2粒子在复合材料中起着物理交联点和化学交联点作用,复合材料玻璃化转变温度(Tg)明显地高于其纯PMMA的玻璃化转变温度,随着纳米SiO2粒子含量的增加,复合材料玻璃化温度升高,而透明度明显降低。  相似文献   

2.
采用两步法将可聚合的乙烯基单体键接到S iO2纳米粒子表面合成了大分子单体.首先利用过量的甲苯-2,4-二异氰酸酯(TD I)对S iO2粒子表面进行化学修饰合成出表面带有高反应活性-NCO基团的功能化S iO2粒子(S iO2-TD I),再利用S iO2-TD I与丙烯酸羟丙酯(HPA)反应将碳-碳双键引入到S iO2粒子表面.系统考察了反应条件对TD I与S iO2反应的影响.此外,利用红外光谱和透射电镜对大分子单体进行表征,结果表明S iO2大分子单体能均匀地分散在甲苯中,没有发生明显团聚.  相似文献   

3.
SiO2大分子单体的合成   总被引:2,自引:0,他引:2  
欧宝立 《应用化学》2006,23(7):803-0
SiO2大分子单体的合成;SiO2;甲苯二异氰酸酯;表面修饰;二氧化硅大分子单体  相似文献   

4.
Random copolymers of polystyrene-co-polyvinyl triethoxysilane (PS-co-PVTES) were prepared via semi-batch emulsion polymerization with different feed monomer compositions and evaluated as precursors of polystyrene (PS)/silica nanocomposites. Small-angle X-ray scattering (SAXS) profiles acquired from 20 °C to 180 °C showed that, at temperatures higher than glass transition temperature (T g) of PS, the latex particles aggregate. On thermal annealing at 180 °C, silica-rich domains are formed, as corroborated by scanning electron microscopy. Infrared spectroscopy and differential scanning calorimetry analyses showed a reduction of the silanol concentration and an increase in the T g value, respectively. The silica long domain spacing, measured by SAXS, depends on the concentration of vinyl triethoxysilane (VTES) in the feed; this value varied from 35 to 57 nm when the weight ratio of the monomers (styrene/VTES) was 50:50 and 90:10, respectively.  相似文献   

5.
The present article describes the synthesis and emulsion copolymerization of a block-type amphiphilic poly(2-oxazoline) macromonomer possessing a polymerizable vinyl ester group. The macromonomer was synthesized by one-pot two-stage block copolymerization of 2-oxazolines using vinyl iodoacetate as initiator. 2-Methyl- and 2-n-butyl-2-oxazolines were employed for the construction of hydrophilic and hydrophobic segments, respectively. The surface activities evaluated by the surface tension of the macromonomer in water were fairly good. Emulsion copolymerization of vinyl acetate with the macromonomer was carried out. The macromonomer acted as a polymeric surfactant, as well as a comonomer. The resulting copolymer latex particles were spherical and their diameter was in the sub-micron range. The effects of the composition of the macromonomer on the emulsion copolymerization and the resulting latex particles were examined. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
A novel bifunctional vinyl‐terminated polyurethane macromonomer was applied to the dispersion polymerization of styrene in ethanol. Monodisperse polystyrene (PS) microspheres were successfully obtained above 15 wt % of macromonomer relative to styrene. The steep slope from the reduction of the average particle size reveals that the macromonomer can efficiently stabilize higher surface area of the particles when compared with a conventional stabilizer, poly(N‐vinylpyrrolidone). The stable and monodisperse PS microspheres having the weight‐average diameter of 1.2 μm and a good uniformity of 1.01 were obtained with 20 wt % polyurethane macromonomer. The grafting ratio of the PS calculated from 1H NMR spectra linearly increased up to 0.048 with 20 wt % of the macromonomer. In addition, the high molecular weights (501,300 g/mol) of PS with increased glass transition and enhanced thermal degradation temperature were obtained. Thus, these results suggest that the bifunctional vinyl‐terminated polyurethane macromonomer acts as a reactive stabilizer, which gives polyurethane‐grafted PS with a high molecular weight. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3566–3573, 2005  相似文献   

7.
助催化剂对N催化剂催化乙烯-苯乙烯共聚反应的影响   总被引:1,自引:0,他引:1  
研究了N催化剂分别与助催化剂AlEt3和Et2 AlOAlEt2 结合 ,在给电子体二苯基二甲氧基硅烷 (DDS)存在下 ,催化乙烯和苯乙烯共聚合反应 ,考察了Al Ti摩尔比对共聚反应的影响 .共聚产物经过丁酮 (MEK)和四氢呋喃 (THF)连续抽提 ,表明共聚产物包括无规聚苯乙烯 ,乙烯 苯乙烯共聚物和乙烯均聚物 .乙烯 苯乙烯共聚物分别用1 3C NMR、DSC和GPC进行表征 ,结果表明 ,助催化剂不仅对N催化剂的聚合活性有影响 ,而且对共聚产物中各级份的重量比例也有显著影响 ;特别是对乙烯 苯乙烯共聚物中苯乙烯的含量、熔点 (Tm)和玻璃化转变温度 (Tg)有明显的影响 .  相似文献   

8.
Sodium polyaspartate (PAspNa) macromonomer with an acryloyl end group was synthesized for dispersion polymerization. At first, a poly(succinimide) (PSI) derivative with a hydroxyphthalimide end group was synthesized by polycondensation of l-aspartic acid and 4-hydroxyphthalic acid. Then, the PSI derivative was end-capped with an acryloyl group by a reaction with acrlyloyl chloride. Finally, a PAspNa derivative with a vinyl end group was synthesized by a hydrolysis of succinimide units by sodium hydroxide. The synthesized macromonomer was applied as a polymerizable stabilizer in dispersion copolymerization of styrene in a mixture of ethanol and water. The PAspNa macromonomer acted as an effective stabilizer and gave sub-micron-sized polymeric particles in dispersion polymerization in polar medium.  相似文献   

9.
纳米Fe3O4/聚苯乙烯均匀分散体系的制备及结构   总被引:7,自引:0,他引:7  
用化学共沉淀法制备了Fe3O4纳米颗粒,以油酸为表面活性剂,苯乙烯为载液,制备了稳定的纳米Fe3O4可聚合磁流体,将可聚合磁流体经自由基引发聚合制成纳米Fe3O4/聚苯乙烯均匀分散体系,用WAXRD研究了Fe3O4纳米粒子的结晶情况;用FTIR研究了油酸表面改性前后Fe3O4粒子表面官能团的变化;用TEM研究了Fe3O4颗粒的粒径大小及其在苯乙烯单体和聚苯乙烯中的分散情况;用DSC和TGA研究了纳米Fe3O4/聚苯乙烯均匀分散体系的玻璃化转变温度(Tg)和热稳定性,结果表明,合成的纳米Fe3O4为立方晶型,平均粒径在10nm左右,油酸分子在Fe3O4表面是化学吸附,经表面处理的Fe3O4超细颗粒在苯乙烯和聚苯乙烯基体中分散较均匀.界面粘结较好,含1.8%Fe3O4纳米颗粒的聚苯乙烯的最大热失重温度比聚苯乙烯提高了13K,Fe3O4/聚苯乙烯复合体系的饱和磁化强度σs为17.43emu/g.  相似文献   

10.
IntroductionUseful strategies for the synthesis of polymer-ic particles and their surface modification have re-ceived much attention. In recent years,authorshave been interested in the preparation and thecharacterization of sub- micron to micron- sizemonodisperse polymeric particles by the emulsifier-free radical dispersion copolymerization of hy-drophilic macromonomers and hydrophobicmonomers in polar solvents.Itwas found thatwa-ter- soluble polymer chains grafted on the surfacesof the partic…  相似文献   

11.
By controlling the feed ratio of CMS/styrene and the polymerization time, a series of hyperbranched copolystyrenes(HBCPS) were synthesized with comparable weight-averaged molecular weights(Mw) but different degree of branching(DB) through atom transfer radical self-condensing vinyl copolymerization(ATR-SCVCP) with Cu Br/2,2?-bipyridyl as the catalyst. The resulting HBCPS samples were used to investigate the effect of branching architecture on their glass transition behavior. With the DB increased, the glass transition temperatures(Tg) of HBCPS samples measured by DMA and DSC both decreased. Their spin-lattice relaxation times(1H T1r) of protons displayed the same downtrend with increasing DB. Besides, a correlation between the Tgs and the DB was well established by all-atom molecular dynamics(MD) simulations. The values of MD-determined Tgs are little higher than the corresponding experimental ones. However, the dependence of Tgs on DB is in good agreement with the experimental results, i.e., Tg decreases both in experiments and simulations with increasing DB.  相似文献   

12.
The novel biodegradable polylactic acid-β-cyclodextrin (PLA-β-CD) cross-linked copolymer microgels were prepared by the radical copolymerization of PLA macromonomer and polymerizable β-CD derivatives. The β-CD derivatives with various numbers of polymerizable vinyl groups were synthesized from 1-allyloxy-2,3-epoxy propane (also called allylglycidyl ether, AGE) and β-CD. The chemical structures of polymerizable monomers were determined by NMR. The thermal properties, size, morphology, in vitro degradation and swelling behavior of the microgels were investigated. The results indicated that the microgels were stable under thermal conditions up to 200 °C. The microgels were spherical in aqueous solution. The hydrophilicity of the microgels increased with increasing β-CD contents, while the swelling ratios and degradation rate decreased. The more vinyl groups on β-CD, the higher cross-linked density, which resulted in a decrease of the swelling ratios and the rate of degradation.  相似文献   

13.
The grafting polymerization of styrene initiated by the alkyl chloride groups of poly(CTFE‐alt‐VE) and poly[(CTFE‐alt‐VE)‐co‐(HFP‐alt‐VE] copolymers (where CTFE, HFP, and VE stand for chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and vinyl ether (VE), respectively) followed by the chemical modification of the polystyrene grafts are presented. First, the fluorinated alternating copolymers were produced by radical copolymerization of CTFE (with HFP) and VE. Second, atom transfer radical polymerization enabled the grafting polymerization of styrene in the presence of the poly(CTFE‐alt‐VE)‐macroinitiator using the alkyl chloride group of CTFE as the initiation site. Kinetics of the styrene polymerization indicated that such a grafting had a certain controlled character. For the first time, grafting of polystyrene onto alternating fluorinated copolymers has been achieved. Differential scanning calorimetry thermograms of these graft copolymers exhibited two glass transition temperatures assigned to both amorphous domains of the polymeric fluorobackbone (ranging from ?20 to +56 °C) and the polystyrene grafts (ca. 95 °C). The thermostability of these copolymers increased on grafting. Thermal degradation temperatures at 5% weight loss were ranging from 193 to 305 °C when the polystyrene content varied from 81 to 27%. Third, chloromethylation of the polystyrene grafts followed by the cationization of the chloromethyl dangling groups led to original ammonium‐containing graft copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Nanocomposites of poly(vinyl alcohol)/silica nanoparticles (PVA-SNs) were prepared by in-situ radical copolymerization of vinyl silica nanoparticles functionalized by vinyltriethoxysilane (VTEOS) and vinyl acetate with benzoyl peroxide (BPO, i.e., initiator), subsequently saponified via direct hydrolysis with NaOH solution. The resulting vinyl silica nanoparticles, PVA-SNs were characterized by means of fourier transformation spectroscopy (FTIR), transmission electron microscopy (TEM) and the elemental analysis method. Effects of silica nanoparticles on viscosity and alcoholysis of PVA-SNs were studied by a ubbelohode capillary viscometer and the back titration method. The morphological structure of PVA-SN films was investigated by scanning electron microscopy (SEM). Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile test were used to determine the thermal and mechanical properties of PVA-SN films. The results indicated that the content of vinyl groups on the surface of the vinyl silica nanoparticles was up to 3.02 mmol/g and vinyl silica nanoparticles had been successfully copolymerized with vinyl acetate. Furthermore, compared to pure PVA, silica nanoparticles bonded with polymer matrix in a low concentration affected the viscosity and alcoholysis of the PVA-SNs materials. At the same time, it resulted in the improvement of the thermal and mechanical properties of the PVA-SN materials due to a strong interaction between silica nanoparticles and the polymer matrix via a covalent bond. It could be found that the optical clarity of the membrane was changed through UV-Vis absorption spectrum due to the introduction of silica nanoparticles.  相似文献   

15.
The radical polymerization of maleic anhydride(MA),styrene(ST)with the vinyl groups introduced onto the surface of the nano-sized silica via solution polymerization method was developed.The methacryloxypropyl nano-sized silica(MPNS)was used as macromonomer and polymerized with maleic anhydride and styrene by initiating with BPO in toluene.The structure and properties of MPNS/SMA nano-composite were characterized by FT-IR spectra and TEM.Meanwhile,it was applied as tanning agent compared with the traditional styrene-maleic anhydride copolymer in leather.It was found that the applied leather had better quality characteristics with the addition of the nano-sized silica.  相似文献   

16.
Aerogel/polystyrene nanocomposites with mixed free and aerogel-attached polystyrene chains were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. 3-methacryloxypropyldimethylchlorosilane containing a double bond, which could be incorporated into polystyrene chains by a “grafting through” approach, was used as an aerogel modifier. Kinetics of RAFT polymerization of styrene in the presence of modified silica aerogel was studied by monitoring conversion and molar mass values. To further study, attached polymers were detached and their molecular characteristics were compared to free chains. According to results, the presence of silica aerogel particles has a sensible influence on polymerization kinetic and more aerogels result in decreased polymerization rate and conversion. The dispersity (Ð) of polymer chains increased by the addition of silica aerogel. In the case of aerogel-attached polystyrene chains, number-averaged molar mass values were slightly lower than that of free chains. Also, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to observe the effect of loading on thermal properties of synthesized nanocomposites.  相似文献   

17.
Differential scanning calorimetry (DSC) and laser‐interferometric creep rate spectroscopy (CRS) were used for kinetic and discrete analysis of segmental motion within (and close to) glass transition range in polystyrene ‐ poly(α‐methyl styrene) (PS/PMS) and polystyrene ‐ poly(vinyl methyl ether) (PS/PVME) miscible blends. Two kinds of segmental dynamics heterogeneity were found. Separate ‘unfreezing’ of PS and PMS segmental motions was observed that manifested itself in two Tgs and simultaneous large drop in the Tg s, as well as glass transition activation energy, motional event scale and cooperativity degree values, down to the β‐relaxation parameters. The wide activation energy dispersion within a single broad glass transition in PS/PVME blends was found, and this relaxation region was subdivided, by CRS, into several predicted kinds of segmental motion. Both results are treated in the framework of the concept of common segmental nature of α‐ and β‐relaxations in flexible chain polymers.  相似文献   

18.
The effects of radicals on silica surface, which were formed by γ‐ray irradiation, on the polymerization of vinyl monomers were investigated. It was found that the polymerization of styrene was remarkably retarded in the presence of γ‐ray‐irradiated silica above 60 °C, at which thermal polymerization of styrene is readily initiated. During the polymerization, a part of polystyrene formed was grafted onto the silica surface but percentage of grafting was very small. On the other hand, no retardation of the polymerization of styrene was observed in the presence of γ‐ray‐irradiated silica below 50 °C; the polymerization tends to accelerate and polystyrene was grafted onto the silica surface. Poly(vinyl acetate) and poly(methyl methacrylate) (MMA) were also grafted onto the surface during the polymerization in the presence of γ‐ray‐irradiated silica. The grafting of polymers onto the silica surface was confirmed by thermal decomposition GC‐MS. It was considered that at lower temperature, the grafting based on the propagation of polystyrene from surface radical (“grafting from” mechanism) preferentially proceeded. On the contrary, at higher temperature, the coupling reaction of propagating polymer radicals with surface radicals (“grafting onto” mechanism) proceeded to give relatively higher molecular weight polymer‐grafted silica. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2972–2979, 2006  相似文献   

19.
Block copolymers of styrene and 2-vinylpyridine of different molecular weights were synthesized and chemically modified to poly(vinyl pyridine)/poly(styrene sulfonate) or polystyrene/poly(2-vinyl pyridinium) salts. Adsorption on “Spherosil” silica with a high specific surface area was performed from aqueous solutions of polyelectrolyte copolymers or from noncharged copolymer in an organic medium and subsequent sulfonation or quaternization in the adsorbed state. The adsorption mechanism was studied under various solvent conditions to give silica maximal ion-exchange properties. Modification of silica resulted in a highly stable coated material which combines the mechanical properties of the porous beads and the ion-exchange properties of the “supported” and “pellicular” ion-exchangers and should have potential use in chromatography.  相似文献   

20.
Free radical-initiated copolymerization of N-phenyl maleimide (NPMI) with styrene (St), vinyl acetate (VAc) and methyl meth-acrylate (MMA) at 35°C in benzene solution initiated by AIBN was studied. The copolymerization of NPMI and St yields a “nearly equimolecular” alternating copolymer, irrespective of monomer feed. Reactivity ratios of NPMI with St, VAc, and MMA were determined by a curve-fitting method which has the advantage of delivering values not involving personal judgement. Q1 and e1 values of NPMI were also calculated. Tentative explanations have been proposed to Interpret the “nearly alternating” copolymerization between NPMI and St. In addition, thermal stabilities of copolymers were studied by using a programmed thermo-gravimetric analysis technique. Copolymers of St, VAc, and MMA show a considerable increase in thermal stability with increasing content of NPMI. The glass transition temperatures of copolymers of NPMI with MMA and St were measured by differential scanning calorimetry. In both series of copolymers the glass transition temperature increases markedly with increasing in NPMI content. In the case of NPMI-St copolymers, the relative thermal stability as well as glass transition temperature also corroborated the nearly alternating behavior observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号