首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosynthesis of tetrapetalones   总被引:1,自引:0,他引:1  
The biosynthesis of tetrapetalones (tetrapetalones A, B, C, and D) in Streptomyces sp. USF-4727 was studied by feeding experiments with [1-13C] sodium propanoate, [1-13C] sodium butanoate, [carbonyl-13C] 3-amino-5-hydroxybenzoic acid (AHBA) hydrochloride, and [1-13C] glucose, followed by analysis of the 13C-NMR spectra. These feeding experiments revealed that the four tetrapetalones were polyketide compounds constructed from propanoate, butanoate, AHBA, and glucose. The tetrapetalone biosynthetic pathway was also suggested in this study. In this pathway, tetrapetalone A (1) is synthesized by polyketide synthase (PKS) using AHBA as a starter unit, then the side chain of 1 is subjected to acetoxylation to produce tetrapetalone B (2). Additionally, 1 is oxidized and transformed into tetrapetalone C (3). In a similar way, 2 is converted to tetrapetalone D (4). Therefore, the biosynthetic relationship of the four tetrapetalones was indicated.  相似文献   

2.
Butirosin, an aminoglycoside antibiotic produced by Bacillus circulans, bears the unique (S)-4-amino-2-hydroxybutyrate (AHBA) side chain, which protects the antibiotic from several common resistance mechanisms. The AHBA side chain is advantageously incorporated into clinically valuable antibiotics such as amikacin and arbekacin by synthetic methods. Therefore, it is of significant interest to explore the biosynthetic origins of this useful moiety. We report here that the AHBA side chain of butirosin is transferred from the acyl carrier protein (ACP) BtrI to the parent aminoglycoside ribostamycin as a gamma-glutamylated dipeptide by the ACP:aminoglycoside acyltransferase BtrH. The protective gamma-glutamyl group is then cleaved by BtrG via an uncommon gamma-glutamyl cyclotransferase mechanism. The application of this pathway to the in vitro enzymatic production of novel AHBA-bearing aminoglycosides is explored with encouraging implications for the preparation of unnatural antibiotics via directed biosynthesis.  相似文献   

3.
Butirosins A and B are naturally occurring aminoglycoside antibiotics that have a (2S)-4-amino-2-hydroxybutyrate (AHBA) side chain. Semisynthetic addition of AHBA to clinically valuable aminoglycoside antibiotics has been shown both to improve their pharmacological properties and to prevent their deactivation by a number of aminoglycoside-modifying enzymes involved in bacterial resistance. We report here that the biosynthesis of AHBA from L-glutamate, encoded within a previously identified butirosin biosynthetic gene cluster, proceeds via intermediates tethered to a specific acyl carrier protein (ACP). Five components of the pathway have been purified and characterized, including the ACP (BtrI), an ATP-dependent ligase (BtrJ), a pyridoxal phosphate-dependent decarboxylase (BtrK), and a two-component flavin-dependent monooxygenase system (BtrO and the previously unreported BtrV). The proposed biosynthetic pathway includes a gamma-glutamylation of an ACP-derived gamma-aminobutyrate intermediate, possibly a rare example of protective group chemistry in biosynthesis.  相似文献   

4.
BACKGROUND: The mitomycins are natural products that contain a variety of functional groups, including aminobenzoquinone- and aziridine-ring systems. Mitomycin C (MC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. Precursor-feeding studies showed that MC is derived from 3-amino-5-hydroxybenzoic acid (AHBA), D-glucosamine, L-methionine and carbamoyl phosphate. A genetically linked AHBA biosynthetic gene and MC resistance genes were identified previously in the MC producer Streptomyces lavendulae NRRL 2564. We set out to identify other genes involved in MC biosynthesis. RESULTS: A cluster of 47 genes spanning 55 kilobases of S. lavendulae DNA governs MC biosynthesis. Fourteen of 22 disruption mutants did not express or overexpressed MC. Seven gene products probably assemble the AHBA intermediate through a variant of the shikimate pathway. The gene encoding the first presumed enzyme in AHBA biosynthesis is not, however, linked within the MC cluster. Candidate genes for mitosane nucleus formation and functionalization were identified. A putative MC translocase was identified that comprises a novel drug-binding and export system, which confers cellular self-protection on S. lavendulae. Two regulatory genes were also identified. CONCLUSIONS: The overall architecture of the MC biosynthetic gene cluster in S. lavendulae has been determined. Targeted manipulation of a putative MC pathway regulator led to a substantial increase in drug production. The cloned genes should help elucidate the molecular basis for creation of the mitosane ring system, as well efforts to engineer the biosynthesis of novel natural products.  相似文献   

5.
The biosynthesis of 3-amino-5-hydroxybenzoic acid (AHBA), precursor of the ansamycin and mitomycin antibiotics, proceeds by the aminoshikimate pathway from 3,4-dideoxy-4-amino-D-arabino-heptulosonic acid 7-phosphate (aminoDAHP). Identification of RifN, product of one of three genes from the rifamycin biosynthetic gene cluster known to be essential for aminoDAHP formation, as a specific kanosamine (3-deoxy-3-amino-D-glucose) 6-kinase establishes kanosamine and its 6-phosphate as specific intermediates in AHBA formation. This suggests a hypothetical reaction sequence for aminoDAHP formation, and thus for the early steps of AHBA biosynthesis, starting from UDP-D-glucose and introducing the nitrogen by oxidation and transamination at C-3.  相似文献   

6.
[reaction: see text] The enantioselective total synthesis of proansamitocin, a key biosynthetic intermediate of the highly potent antitumor agent ansamitocin P-3, is described which bears a diene-ene RCM as the key macrocyclization step. Feeding of proansamitocin to an AHBA block mutant Actinosynnema pretiosum (HGF073) yielded ansamitocin P-3 as well as dechloroansamitocin P-3, the latter also being formed upon fermentation in the presence of 3-amino-5-methoxybenzoic acid.  相似文献   

7.
Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein–protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes mitE, mmcB, mitB, and mitF were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein–protein interactions, the in vitro pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein–protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics.  相似文献   

8.
[reaction: see text] Little is known about how quinoxaline-2-carboxylic acid (QC) is synthesized in nature. On the basis of analysis of echinomycin biosynthetic gene clusters as well as feeding experiments with labeled precursors, we have proposed a biosynthetic pathway to QC and identified the (2S,3S)-beta-hydroxytryptophan as a key intermediate.  相似文献   

9.
The synthesis of taxa-4(20),11(12)-diene-2alpha,5alpha-diol is described. An improved procedure for the intramolecular Diels-Alder cycloaddition previously reported in our synthesis of taxa-4(5), 11(12)-diene has been utilized to prepare a taxoid with oxygenation in the B and C rings. It has been established previously that taxa-4(20),11(12)-dien-5alpha-ol is the first oxygenated intermediate on the biosynthetic pathway to Taxol. Taxa-4(20), 11(12)-diene-2alpha,5alpha-diol (5), which has been observed in a biosynthetic conversion, is a potential candidate as the second oxygenated intermediate on the Taxol biosynthetic pathway, has been prepared to probe the intermediacy of this substance.  相似文献   

10.
BACKGROUND: Streptomyces fradiae is the principal producer of urdamycin A. The antibiotic consists of a polyketide-derived aglycone, which is glycosylated with four sugar components, 2x D-olivose (first and last sugar of a C-glycosidically bound trisaccharide chain at the 9-position), and 2x L-rhodinose (in the middle of the trisaccharide chain and at the 12b-position). Limited information is available about both the biosynthesis of D-olivose and L-rhodinose and the influence of the concentration of both sugars on urdamycin biosynthesis. RESULTS: To further investigate urdamycin biosynthesis, a 5.4 kb section of the urdamycin biosynthetic gene cluster was sequenced. Five new open reading frames (ORFs) (urdZ3, urdQ, urdR, urdS, urdT) could be identified each one showing significant homology to deoxysugar biosynthetic genes. We inactivated four of these newly allocated ORFs (urdZ3, urdQ, urdR, urdS) as well as urdZ1, a previously found putative deoxysugar biosynthetic gene. Inactivation of urdZ3, urdQ and urdZ1 prevented the mutant strains from producing L-rhodinose resulting in the accumulation of mainly urdamycinone B. Inactivation of urdR led to the formation of the novel urdamycin M, which carries a C-glycosidically attached D-rhodinose at the 9-position. The novel urdamycins N and O were detected after overexpression of urdGT1c in two different chromosomal urdGT1c deletion mutants. The mutants lacking urdS and urdQ accumulated various known diketopiperazines. CONCLUSIONS: Analysis of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster revealed a widely common biosynthetic pathway leading to D-olivose and L-rhodinose. Several enzymes responsible for specific steps of this pathway could be assigned. The pathway had to be modified compared to earlier suggestions. Two glycosyltransferases normally involved in the C-glycosyltransfer of D-olivose at the 9-position (UrdGT2) and in conversion of 100-2 to urdamycin G (UrdGT1c) show relaxed substrate specificity for their activated deoxysugar co-substrate and their alcohol substrate, respectively. They can transfer activated D-rhodinose (instead of D-olivose) to the 9-position, and attach L-rhodinose to the 4A-position normally occupied by a D-olivose unit, respectively.  相似文献   

11.
Carquinostatin A (CQS), a potent neuroprotective substance, is a unique carbazole alkaloid with both an ortho‐quinone function and an isoprenoid moiety. We identified the entire gene cluster responsible for CQS biosynthesis in Streptomyces exfoliatus through heterologous production of CQS and gene deletion. Biochemical characterization of seven CQS biosynthetic gene products (CqsB1–7) established the total biosynthetic pathway of CQS. Reconstitution of CqsB1 and CqsB2 showed that the synthesis of the carbazole skeleton involves CqsB1‐catalyzed decarboxylative condensation of an α‐hydroxyl‐β‐keto acid intermediate with 3‐hydroxybutyryl‐ACP followed by CqsB2‐catalyzed oxidative cyclization. Based on crystal structures and mutagenesis‐based biochemical assays, a detailed mechanism for the unique deprotonation‐initiated cyclization catalyzed by CqsB2 is proposed. Finally, analysis of the substrate specificity of the biosynthetic enzymes led to the production of novel carbazoles.  相似文献   

12.
Flavin-dependent monooxygenases (FMOs) are involved in important biosynthetic pathways in diverse organisms, including production of the siderophores used for the import and storage of essential iron in serious pathogens. We have shown that the FMO from Aspergillus fumigatus, an ornithine monooxygenase (Af-OMO), is mechanistically similar to its well-studied distant homologues from mammalian liver. The latter are highly promiscuous in their choice of substrates, while Af-OMO is unusually specific. This presents a puzzle: how do Af-OMO and other FMOs of the biosynthetic classes achieve such specificity? We have discovered substantial enhancement in the rate of O(2) activation in Af-OMO in the presence of L-arginine, which acts as a small molecule regulator. Such protein-level regulation could help explain how this and related biosynthetic FMOs manage to couple O(2) activation and substrate hydroxylation to each other and to the appropriate cellular conditions. Given the essentiality of Fe to Af and the avirulence of the Af-OMO gene knock out, inhibitors of Af-OMO are likely to be drug targets against this medically intractable pathogen.  相似文献   

13.
Gan LS  Fan CQ  Yang SP  Wu Y  Lin LP  Ding J  Yue JM 《Organic letters》2006,8(11):2285-2288
[structure: see text] Two unprecedented C,C-linked dimeric indolizidine alkaloids, flueggenines A (1) and B (2), as well as their biosynthetic precursor (-)-norsecurinine, were isolated from the roots of Flueggea virosa. Their structures and absolute configurations were elucidated by spectroscopic methods, especially 2D NMR and CD spectral analyses, and supported by their unique biosynthetic pathway as proposed. Both 1 and 2 were tested against two tumor cell lines, and alkaloid 1 showed weak activity against the P-388 cell line.  相似文献   

14.
A biosynthetic intermediate of violacein produced by the mixed enzymes of VioABDE was elucidated to be 5-(5-hydroxy-1H-indol-3-yl)-3-(1H-indol-3-yl)-1H-pyrrole-2-carboxylic acid, named protoviolaceinic acid, indicating that VioC, responsible for the final biosynthetic step, works to oxygenate at the 2-position of the right side indole ring, and that the oxygenation reaction to form the central pyrrolidone core proceeds in a non-enzymatic fashion.  相似文献   

15.
2‐Deoxystreptamine (2DOS) is the unique chemically stable aminocyclitol scaffold of clinically important aminoglycoside antibiotics such as neomycin, kanamycin, and gentamicin, which are produced by Actinomycetes. The 2DOS core can be decorated with various deoxyaminosugars to make structurally diverse pseudo‐oligosaccharides. After the discovery of biosynthetic gene clusters for 2DOS‐containing aminoglycoside antibiotics, the function of each biosynthetic enzyme has been extensively elucidated. The common biosynthetic intermediates 2DOS, paromamine and ribostamycin are constructed by conserved enzymes encoded in the gene clusters. The biosynthetic intermediates are then converted to characteristic architectures by unique enzymes encoded in each biosynthetic gene cluster. In this Personal Account, we summarize both common biosynthetic pathways and the pathways used for structural diversification.

  相似文献   


16.
Thiostrepton, a natural peptide macrocycle, is of great interest due to its structural complexity and numerous biological activities, including anti-bacterial, anti-tumor, and anti-plasmodial activities. The quinaldic acid (QA) moiety-containing side ring (loop 2) was proven to play an important role in carrying out these functions. Previously, we proposed biosynthetic logic for thiostrepton loop 2 and demonstrated the formation mechanism of QA. Herein, we report the discovery and efficient synthesis of a biologically active alkaloid, that is, a key intermediate involved in the thiostrepton biosynthetic pathway. A chemo-enzymatic method was performed to synthesize the molecule, and a series of analogs were prepared for bioassays, which included the examination of anti-bacterial and anti-tumor activities.  相似文献   

17.
The biosynthetic origin of the tumor-inhibitory derivative, BE-10988, was studied in Streptomyces sp . BA10988 by retrobiosynthetic NMR analysis using [U-(13)C6]glucose as a precursor. The isotopologue compositions of the indole moieties of BE-10988 and tryptophan were virtually identical. This indicates that tryptophan or a closely related metabolite served as a biosynthetic precursor of BE-10988 in analogy to the biosynthetic pathway of camalexin, a structurally related phytoalexin in Arabidopsis thaliana. Labeling experiments with [U-(13)C8(15)N]indole, L-[ring-(2)H5]tryptophan, or L-[U-(13)C3(15)N]cysteine confirmed this hypothesis. However, transfer of the label from [ring-(2)H5]indole pyruvic acid, but not from the known camalexin precursor, [ring-(2)H5]indole-3-acetaldoxime, showed that plants and bacteria have evolved independent mechanisms of tryptophan modification in the biosynthesis of thiazolylindole derivatives.  相似文献   

18.
Hygromycin A, an antibiotic produced by Streptomyces hygroscopicus NRRL 2388, offers a distinct carbon skeleton structure for development of antibacterial agents targeting the bacterial ribosomal peptidyl transferase. A 31.5 kb genomic DNA region covering the hygromycin A biosynthetic gene cluster has been identified, cloned, and sequenced. The hygromycin gene cluster has 29 ORFs which can be assigned to hygromycin A resistance as well as regulation and biosynthesis of the three key moieties of hygromycin A (5-dehydro-alpha-L-fucofuranose, (E)-3-(3,4-dihydroxyphenyl)-2-methylacrylic acid, and 2L-2-amino-2-deoxy-4,5-O-methylene-neo-inositol. The predicted Hyg26 protein has sequence homology to short-chain alcohol dehydrogenases and is assigned to the final step in production of the 5-dehydro-alpha-L-fucofuranose, catalyzing the reduction of alpha-L-fucofuranose. A hyg26 mutant strain was generated and shown to produce no hygromycin A but 5'-dihydrohygromycin A, 5'-dihydromethoxyhygromycin A, and a 5'-dihydrohygromycin A product lacking the aminocyclitol moiety. To the best of our knowledge, these shunt metabolites of biosynthetic pathway intermediates have not previously been identified. They provide insight into the ordering of the multiple unusual steps which compromise the convergent hygromycin A biosynthetic pathway.  相似文献   

19.
The chemoenzymatic installation of the clinically valuable (S)-4-amino-2-hydroxybutyryl side chain onto a number of 2-deoxystreptamine-containing aminoglycosides is described using the purified Bacillus circulans biosynthetic enzymes BtrH and BtrG in combination with a synthetic acyl-SNAC surrogate substrate.  相似文献   

20.
An efficient synthetic route is proposed to produce 2-hydroxy-2-ethyl-3-oxobutanoate for the specific labelling of Ile methyl-γ(2) groups in proteins. The (2)H, (13)C-pattern of the biosynthetic precursor has been designed to optimize magnetization transfer, in large proteins, between these important structural probes and their corresponding backbone nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号