首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Quantum walks act in obviously different ways from their classical counterparts, but decoherence will lessen and close this gap between them. To understand this process, it is necessary to investigate the evolution of quantum walks under different decoherence situations. In this article, we study a non-Markovian decoherent quantum walk on a line. In a short time regime, the behavior of the walk deviates from both ideal quantum walks and classical random walks. The position variance as a measure of the quantum walk collapses and revives for a short time, and tends to have a linear relation with time. That is, the walker's behavior shows a diffusive spread over a long time limit, which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin. We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations, and observe both collapse and revival in the short time regime, and the tendency to be zero in the long time limit. Therefore, quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits, while in the short time regime they oscillate between ballistic and diffusive spreading behavior, and the quantum correlation collapses and revives due to the memory effect.  相似文献   

2.
We study decoherence in the quantum walk on the xy-plane.We generalize the method of decoherent coin quantum walk,introduced by [T.A.Brun,et al.,Phys.Rev.A 67(2003) 032304],which could be applicable to all sorts of decoherence in two-dimensional quantum walks,irrespective of the unitary transformation governing the walk.As an application we study decoherence in the presence of broken line noise in which the quantum walk is governed by the two-dimensional Hadamard operator.  相似文献   

3.
We study the behaviour of the glued trees algorithm described by Childs et al. in [1] under decoherence. We consider a discrete time reformulation of the continuous time quantum walk protocol and apply a phase damping channel to the coin state, investigating the effect of such a mechanism on the probability of the walker appearing on the target vertex of the graph. We pay particular attention to any potential advantage coming from the use of weak decoherence for the spreading of the walk across the glued trees graph.  相似文献   

4.
5.
We investigate the global chirality distribution of the quantum walk on the line when decoherence is introduced either through simultaneous measurements of the chirality and particle position, or as a result of broken links. The first mechanism drives the system towards a classical diffusive behavior. This is used to build new quantum games, similar to the spin-flip game. The second mechanism involves two different possibilities: (a) All the quantum walk links have the same probability of being broken. (b) Only the quantum walk links on a half-line are affected by random breakage. In case (a) the decoherence drives the system to a classical Markov process, whose master equation is equivalent to the dynamical equation of the quantum density matrix. This is not the case in (b) where the asymptotic global chirality distribution unexpectedly maintains some dependence with the initial condition. Explicit analytical equations are obtained for all cases.  相似文献   

6.
We investigate the probability distribution of the quantum walk under coherence non-generating channels. We definea model called generalized classical walk with memory. Under certain conditions, generalized classical random walk withmemory can degrade into classical random walk and classical random walk with memory. Based on its various spreadingspeed, the model may be a useful tool for building algorithms. Furthermore, the model may be useful for measuring thequantumness of quantum walk. The probability distributions of quantum walks are generalized classical random walkswith memory under a class of coherence non-generating channels. Therefore, we can simulate classical random walkand classical random walk with memory by coherence non-generating channels. Also, we find that for another class ofcoherence non-generating channels, the probability distributions are influenced by the coherence in the initial state of thecoin. Nevertheless, the influence degrades as the number of steps increases. Our results could be helpful to explore therelationship between coherence and quantum walk.  相似文献   

7.
徐酉阳  周飞  陈亮  谢艺  薛鹏  冯芒 《中国物理 B》2012,21(4):40304-040304
Quantum walk is different from random walk in reversibility and interference. Observation of the reduced re- versibility in a realistic quantum walk is of scientific interest in understanding the unique quantum behavior. We propose an idea to experimentally investigate the decoherence-induced irreversibility of quantum walks with trapped ions in phase space via the average fidelity decay. By introducing two controllable decoherence sources, i.e., the phase damping channel (i.e., dephasing) and the high temperature amplitude reservoir (i.e., dissipation), in the intervals between the steps of quantum walk, we find that the high temperature amplitude reservoir shows more detrimental effects than the phase damping channel on quantum walks. Our study also shows that the average fidelity decay works better than the position variance for characterizing the transition from quantum walks to random walk. Experimental feasibility to monitor the irreversibility is justified using currently available techniques.  相似文献   

8.
边志浩  秦豪  詹翔  李剑  薛鹏 《中国物理 B》2016,25(2):20307-020307
We implement a quantum walk in phase space with a new mechanism based on the superconducting resonator-assisted double quantum dots.By analyzing the hybrid system,we obtain the necessary factors implementing a quantum walk in phase space:the walker,coin,coin flipping and conditional phase shift.The coin flipping is implemented by adding a driving field to the resonator.The interaction between the quantum dots and resonator is used to implement conditional phase shift.Furthermore,we show that with different driving fields the quantum walk in phase space exhibits a ballistic behavior over 25 steps and numerically analyze the factors influencing the spreading of the walker in phase space.  相似文献   

9.
In the continuous space and time limit, we show that the probability density to find the quantum random walk (QRW) driven by the Hadamard "coin" solves a hyperbolic evolution equation similar to the one obtained for a random two-velocity evolution with spatially inhomogeneous transition rates between the velocity states. In spite of the presence of a nonlinear drift term, it is remarkable that the QRW position can easily be described in simple analytical terms. This allows us to derive the quadratic time dependence of the variance typical for the QRW.  相似文献   

10.
Quantum walk is a very useful tool for building quantum algorithms due to the faster spreading of probability distributions as compared to a classical random walk. Comparing the spreading of the probability distributions of a quantum walk with that of a mnemonic classical random walk on a one-dimensional infinite chain, we find that the classical random walk could have a faster spreading than that of the quantum walk conditioned on a finite number of walking steps. Quantum walk surpasses classical random walk with memory in spreading speed when the number of steps is large enough. However, in such a situation, quantum walk would seriously suffer from decoherence. Therefore, classical walk with memory may have some advantages in practical applications.  相似文献   

11.
安志云  李志坚 《物理学报》2017,66(13):130303-130303
在一维分立时间量子行走中,通过静态和动态两种方式随机地断开连接边引入无序效应,研究了静态逾渗和动态逾渗对量子行走传输特性以及位置自由度和硬币自由之间纠缠的影响.随着演化时间的增加,静态逾渗会使得量子行走从弹道传输转变为安德森局域化,而动态逾渗则会使之转变为经典扩散.理想情况下,量子纠缠在较短的时间内就达到一个常数值E_0.静态逾渗量子行走的纠缠减小,并随着时间做无规振荡,而动态逾渗量子行走的纠缠则会随着时间光滑地增加,并在某一时间超过理想情况下的常数值,表现出动态逾渗增强量子纠缠的特性.  相似文献   

12.
In this paper, we study discrete-time quantum walks on one-dimensional lattices. We find that the coherent dynamics depends on the initial states and coin parameters. For infinite size of lattices, we derive an explicit expression for the return probability, which shows scaling behavior P(0, t) ~ t -1 and does not depends on the initial states of the walk. In the long-time limit, the probability distribution shows various patterns, depending on the initial states, coin parameters and the lattice size. The time-averaged probability mixes to the limiting probability distribution in linear time, i.e., the mixing time M ε is a linear function of N (size of the lattices) for large values of thresholds ϵ. Finally, we introduce another kind of quantum walk on infinite or even-numbered size of lattices, and show that by the method of mathematical induction, the walk is equivalent to the traditional quantum walk with symmetrical initial state and coin parameter.  相似文献   

13.
We consider environment induced decoherence of quantum superpositions to mixtures in the limit in which that process is much faster than any competing one generated by the Hamiltonian H(sys) of the isolated system. While the golden rule then does not apply we can discard H(sys). By allowing for couplings to different reservoirs, we reveal decoherence as a universal short-time phenomenon independent of the character of the system as well as the bath and of the basis the superimposed states are taken from. We discuss consequences for the classical behavior of the macroworld and quantum measurement: For decoherence of superpositions of macroscopically distinct states H(sys) is always negligible.  相似文献   

14.
We analyze the recurrence probability (Pólya number) for d-dimensional unbiased quantum walks. A sufficient condition for a quantum walk to be recurrent is derived. As a by-product we find a simple criterion for localization of quantum walks. In contrast with classical walks, where the Pólya number is characteristic for the given dimension, the recurrence probability of a quantum walk depends in general on the topology of the walk, choice of the coin and the initial state. This allows us to change the character of the quantum walk from recurrent to transient by altering the initial state.  相似文献   

15.
16.
We investigate the impact of decoherence and static disorder on the dynamics of quantum particles moving in a periodic lattice. Our experiment relies on the photonic implementation of a one-dimensional quantum walk. The pure quantum evolution is characterized by a ballistic spread of a photon's wave packet along 28 steps. By applying controlled time-dependent operations we simulate three different environmental influences on the system, resulting in a fast ballistic spread, a diffusive classical walk, and the first Anderson localization in a discrete quantum walk architecture.  相似文献   

17.
张融  徐韵秋  薛鹏 《中国物理 B》2015,24(1):10303-010303
The properties of the two-dimensional quantum walk with point,line,and circle disorders in phase are reported.Localization is observed in the two-dimensional quantum walk with certain phase disorder and specific initial coin states.We give an explanation of the localization behavior via the localized stationary states of the unitary operator of the walker+coin system and the overlap between the initial state of the whole system and the localized stationary states.  相似文献   

18.
We investigate the evolution of a discrete-time one-dimensional quantum walk driven by a position-dependent coin. The rotation angle, which depends upon the position of a quantum particle, parameterizes the coin operator. For different values of the rotation angle, we observe that such a coin leads to a variety of probability distributions, e.g. localized, periodic, classicallike, semi-classical-like, and quantum-like. Further, we study the Shannon entropy associated with position and the coin space of a quantum particle, and compare them with the case of the position-independent coin. Our results show that the entropy is smaller for most values of the rotation angle as compared to the case of the position-independent coin. We also study the effect of entanglement on the behavior of probability distribution and Shannon entropy by considering a quantum walk with two identical position-dependent entangled coins. We observe that in general, a wave function becomes more localized as compared to the case of the positionindependent coin and hence the corresponding Shannon entropy is lower. Our results show that a position-dependent coin can be used as a controlling tool of quantum walks.  相似文献   

19.
《Physics letters. A》2020,384(26):126673
We study one-dimensional quantum walk with four internal degrees of freedom resulted from two entangled qubits. We will demonstrate that the entanglement between the qubits and its corresponding coin operator enable one to steer the walker's state from a classical to standard quantum-walk behavior, and a novel one. Additionally, we report on self-trapped behavior and perfect transfer with highest velocity for the walker. We also show that symmetry of probability density distribution, the most probable place to find the walker and evolution of the entropy are subject to initial entanglement between the qubits. In fact, we confirm that if the two qubits are separable (zero entanglement), entropy becomes minimum whereas its maximization happens if the two qubits are initially maximally entangled. We will make contrast between cases where the entangled qubits are affected by coin operator identically or else, and show considerably different deviation in walker's behavior and its properties.  相似文献   

20.
Quantum walk (QW), which is considered as the quantum counterpart of the classical random walk (CRW), is actually the quantum extension of CRW from the single-coin interpretation. The sequential unitary evolution engenders correlation between different steps in QW and leads to a non-binomial position distribution. In this paper, we propose an alternative quantum extension of CRW from the ensemble interpretation, named quantum random walk (QRW), where the walker has many unrelated coins, modeled as two-level systems, initially prepared in the same state. We calculate the walker's position distribution in QRW for different initial coin states with the coin operator chosen as Hadamard matrix. In one-dimensional case, the walker's position is the asymmetric binomial distribution. We further demonstrate that in QRW, coherence leads the walker to perform directional movement. For an initially decoherenced coin state, the walker's position distribution is exactly the same as that of CRW. Moreover, we study QRW in 2D lattice, where the coherence plays a more diversified role in the walker's position distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号