首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the outer and inner electron spectra of iron (2p, 3p, 3s, and 3d) and phosphorus (3s and 3p) atoms in FeP monophosphide is studied in detail by the X-ray photoelectron spectroscopy (XPS) method. On the basis of the analysis of the binding energy of electrons, as well as the parameters characterizing the structure of experimental spectra, a conclusion is made that Fe3+ (d 5) cations in FeP are stabilized in a state with intermediate value of the total spin (IS, S = 3/2). The range of values of intra-atomic parameters (10Dq, J H ) is established in which the consideration of the high degree of covalence of Fe–P bonds may lead to the stabilization of (FeP6)15– clusters in the IS state.  相似文献   

2.
A number of cerium-based systems are investigated using x-ray photoelectron spectroscopy. It is revealed that there is a correlation between the parameters of the x-ray photoelectron spectra and the heavy-fermion state. This correlation makes it possible to investigate the relaxation processes, anomalously strong reorganization of orbitals, profound collective effects induced by a vacancy field, and hybridization of localized unoccupied f states with delocalized occupied states.  相似文献   

3.
The features of the electronic structure of Yb4d, N1s, C1s, O1s, Br3d core levels and the valence band of ytterbium metalloporphyrins Yb(acac)TPPBr8, Yb(acac)TPP, TPPBr8, and TPP are studied by photoelectron spectroscopy. The position and structure of the Yb4f level for Yb(acac)TPPBr8 are determined by resonant photoemission at the BESSY-II synchrotron center. Simulations of the electronic structure of the valence band show good agreement between the calculated and experimental data. The change in the electronic structure of porphyrins during implantation of the central atom of ytterbium, namely, a more uniform redistribution of the electron density between nitrogen atoms of pyrrole and aza groups, is revealed. The photoelectron spectra of Yb4d states demonstrate the trivalent metal state (Yb3+) in rare-earth metalloporphyrins. The partial destruction of bromine ytterbium tetraphenylporphyrin compound as a result of thermal action is demonstrated.  相似文献   

4.
The influence of substitution on the binding energy of many-body states and the formation of the magnetically ordered state in a heavy-fermion compound (CeAl2) have been studied by measuring the transport characteristics (Hall effect, resistivity) in intermetallic compounds of the Ce(Al1?x M x )2 system (M = Ni, Co; x ≤ 0.08). It is established that the Hall coefficient R H in Ce(Al1?x Co x )2 intermetallides with x = 0.05 and 0.08 grows by more than an order of magnitude as the temperature decreases from 1.8 to 300 K. The experimental data are used to estimate the effective mass of charge carriers, the relaxation time, and the localization radius of many-body states.  相似文献   

5.
The electronic band structures of boron nitride crystal modifications of the graphite (h-BN), wurtzite (w-BN), and sphalerite (c-BN) types are calculated using the local coherent potential method in the cluster muffin-tin approximation within the framework of the multiple scattering theory. The specific features of the electronic band structure of 2H, 4H, and 3C boron nitride polytypes are compared with those of experimental x-ray photoelectron, x-ray emission, and K x-ray absorption spectra of boron and nitrogen. The features of the experimental x-ray spectra of boron nitride in different crystal modifications are interpreted. It is demonstrated that the short-wavelength peak revealed in the total densities of states (TDOS) in the boron nitride polytypes under consideration can be assigned to the so-called outer collective band formed by 2p electrons of boron and nitrogen atoms. The inference is made that the decrease observed in the band gap when changing over from wurtzite and sphalerite to hexagonal boron nitride is associated with the change in the coordination number of the components, which, in turn, leads to a change in the energy location of the conduction band bottom in the crystal.  相似文献   

6.
The electronic spectra of the valence band and core levels of the surface of polygrain alloys with the icosahedral structure and the β-(CsCl)-type solid solution of Al50Cu33Fe17 were investigated by X-ray photoelectron spectroscopy (XPS). The obtained XPS spectra of the Al62.5Cu25Fe12.5 alloy, in comparison with those of the crystalline Al50Cu33Fe17 alloy demonstrate narrowing and a decrease in asymmetry of the Fe2p core level and a decrease in the electron state density N(E F ) near the Fermi level, features expected for the poorly conducting icosahedral phase. The XPS data are compared with the estimates of N(E F ) based on the low-temperature specific heat measurements.  相似文献   

7.
Considering the nonlinearity arising from the interaction between electrons and latticevibrations, an effective electronic model with a self-interaction cubic term is employedto study the interplay between electron-electron and electron-phonon interactions. Basedon numerical solutions of the time-dependent nonlinear Schroedinger equation for aninitially localized two-electron singlet state, we show that the magnitude of theelectron-phonon coupling χ necessary to promote the self-trapping of theelectronic wave packet decreases as a function of the electron-electron interactionU. We show that such dependence is directly linked to the narrowing ofthe band of bounded two-electron states as U increases. We obtain thetransition line in the χ × U parameter space separatingthe phases of self-trapped and delocalized electronic wave packets. The present resultsindicates that nonlinear contributions plays a relevant role in the electronic wave packetdynamics, particularly in the regime of strongly correlated electrons.  相似文献   

8.
Systematic calculations of the probabilities and energies of radiative transitions in doubly excited 3l3l′, 3l4l′, and 4l4l′ states of oxygen, carbon, and nitrogen ions have been carried out within the Hartree-Fock approximation. The emission spectra are obtained, and analysis of the changes in the spectral characteristics with a change in the charge and the number of additional electrons in the ground state of the initial ion is performed. The data obtained are used to interpret the X-ray spectra of the atmospheres of planets and comets.  相似文献   

9.
10.
The electronic—vibrational fluorescence spectra of the first, S01Lb, and second, S01La, electronic transitions of 7-azaindole and its tautomer for an isolated state have been calculated. Specific features of structural changes in 7-azaindole and its tautomer upon electronic excitation are determined. Vibrational spectra are assigned for the ground state, and the vibrational structure of fluorescence spectra is interpreted. It is shown that the intensity redistribution between the 6a and 6b oscillations, which is observed in the fluorescence spectrum of the S01Lb transition in 7-azaindole, can be explained as a result of intensity borrowing (according to the Herzberg—Teller mechanism) from the 1La state.  相似文献   

11.
The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin–orbit coupling and the strong correlations of 5f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f 6 configuration and the jj-type coupling. An increase in the occupancy of the 5f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UN x β phase (La2O3-type structure). The theoretical results are in good agreement with the available experimental data.  相似文献   

12.
The paper reports on an ellipsometric study of the optical properties of RNi5 (R = Y, La, Ce) paramagnetic intermetallic compounds. The dispersion measurements of the refractive index n and of the absorption coefficient k were conducted within a spectral interval 0.083–5.64 eV at room temperature. The behavior of optical interband conductivity with energy is analyzed. The results obtained are discussed in the frame of available information on the electronic band structure of these compounds. The plasma and relaxation frequencies of conduction electrons have been determined.  相似文献   

13.
The thermal expansion coefficients of the following metals in the temperature region between 1,5° and 12°K have been measured: Al, Pb, Pt, Mo, Ta, W, Mg, Cd, Re, Ti, La, Ce, Nd, Gd, Yb. Except for tantalum all the specimens were polycrystalline. Is is found in accordance with theoretical prediction that the coefficient of thermal expansionβ=1/V (?V/?T) [whereV = volume,T = temperature] at sufficiently low temperatures is composed of an electronic component varying linearly with temperature, and a lattice component varying as the cube of the temperature. The electronic component is strongly modified in the superconducting state (Pb, Ta, La). The rare earth metals Gd, Ce and Nd have negative anomalies in their expansion. These are connected with the ferro- and antiferromagnetism of these substances. The results are discussed on the basis of lattice dynamics and the theory of electrons in metals.  相似文献   

14.
The differential transmission spectra of CdSe/ZnS quantum dots are investigated. It is revealed that the differential transmission spectra measured upon resonant excitation of electrons into the first excited state 1P(e) exhibit a number of specific features, such as a decrease in transmission at the pump frequency, bleaching in the course of the pump pulse at frequencies corresponding to the fundamental optical transition 1S 3/2(h)-1S(e) and transitions between excited hole states and the 1S(e) electron ground state, and retardation of this process with an increase in the energy of the pump pulse. The observed specific features can be explained by the following factors: (i) the absence of a “phonon bottleneck” for electrons due to the energy transfer from hot electrons to rapidly relaxing holes, (ii) relaxation through intermediate quantum-well energy levels of holes, and (iii) retardation of relaxation with increasing number of excited charge carriers in a quantum dot.  相似文献   

15.
The pressure dependences of the thermoelectric power S of Ce samples were measured at pressures P from 0 to 20 GPa in a synthetic diamond cell. The dependence of S on P was found to be nonmonotonic both in the region of transitions from the fcc (γ) phase to the modified fcc (α) phase followed by the transition to the body-centered monoclinic (α″) and the tetragonal (ε) phases at pressures of about 1, 5–6, and 12–15 GPa, respectively, and in the stability region of these phases. The thermoelectric power sign was found to be positive for all high-pressure Ce phases. The found S(P) dependence was compared with the published computational data on the electronic structure of the cerium phases. Cerium was taken as an example to demonstrate the advantage of the thermoelectric studies over other methods of investigation of phase transitions.  相似文献   

16.
A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach–Sunjic approximation using the Mahan–Wertheim–Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy Г (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, <Im[??1 / ε(E, q)]> q , of Al(002) differs from the optical value Im[??1 / ε(E, q?=?0)] and is well described by the Lindhard–Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ε(E, q) as found in optical spectra and ab initio calculations of aluminum.  相似文献   

17.
The electronic structure of SiO2 is investigated by means of valence to core X-ray emission spectroscopy and quantum-mechanical calculations in the density functional theory approximation. Analysis of a complete set of SiKα1, SiL2, 3, and OKα X-ray emission and XPS spectra along with the calculated data provides comprehensive information on chemical interactions that occur in SiO2.  相似文献   

18.
The effect of high pressure up to 65 GPa on the crystal structure and optical absorption spectra of NdFeO3 orthoferrite single crystals is studied in diamond anvil cells. At P~37.5 GPa, an electronic transition at which the optical absorption edge jumps from ~2.2 to ~0.75 eV is observed. The equation of state V(P) is studied on the basis of the X-ray diffraction data obtained under pressure. This study reveals a first-order structural phase transition at P~37 GPa with a jump of ~4% in the unit cell volume. It is shown that the phase transition observed in rare-earth orthoferrites at 30–40 GPa is a transition of the insulator-to-semiconductor type.  相似文献   

19.
The atomic and electronic structures of metal-rich noncentrosymmetric zirconium oxide synthesized by the ion beam sputtering of a metallic target in an oxygen atmosphere has been studied by X-ray photoelectron spectroscopy, Raman scattering, spectral ellipsometry, and quantum-chemical simulation. It has been established that ZrOx < 2 consists of ZrO2, metallic Zr, and zirconium suboxides ZrOy. The stoichiometry parameter of ZrOy has been estimated. It has been shown that the optical properties of ZrOx < 2 are determined by metallic Zr. A model of fluctuation of the width of the band gap and a potential for electrons and holes in ZrOx < 2 based on spatial fluctuations of the chemical composition has been proposed.  相似文献   

20.
Fluorescence spectra of two long-wavelength electron transitions S01Lb and S01La in uncharged and zwitterionic forms of L-tryptophan (Trp) in aqueous solution and in the complex of Trp with water molecule were calculated using the Frank–Condon approximation. Geometric parameters of Trp in electronically excited states were determined, and the vibrational structure of vibronic spectra was analyzed. It was shown that the relative position of structural fragments of alanine (R-Ala) and indole (R-In) could have a determining effect on the fluorescence and formation of the vibrational structure of electronic spectra. The increase of the rotation angle between the R-Ala and R-In, which depends on the Trp environment, results in the Trp fluorescence originating only from the singlet excited state 1La.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号