首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Summary Many organic C-nitroso compounds R-NO form stable dimers with a covalent NN bond. To gain insight into the dimerization reaction 2 R-NO (R-NO)2 a theoretical study of the dimerization to atrans-form was performed using HNO as a model compound. Complete geometry optimizations were carried out at the HF, MP2 and QCISD levels using a 6–31G* basis. In the stationary points energies were calculated at the MP4(SDTQ) and QCISD(T) levels. For the equilibrium structure of the monomer and dimers stable RHF solutions were found, whereas for the TS UHF and UMPn calculations were applied. Extensive spin contamination was found in the UHF wavefunction, and projections up tos+4 were invoked. Relative energies were corrected for differences in ZPE. Calculations were made (a) for the least-motion path (C 2h symmetry) and (b) for a path with complete relaxation of all internal coordinates. Along the latter path a TS having virtuallyC i symmetry was found. Along path (a) an activation energy of around 150 kcal/mol was predicted, in conformity with a symmetry forbidden reaction. On the relaxed path (b) the barrier to dimerization was estimated to be 10.7 kcal/mol at the MP4(SDTQ)//MP2 level, and 10.9 kcal/mol at the QCISD(T)//QCISD level. Unscaled ZPE corrections, calculated at the SCF level, changed these values to 12.7 and 12.9 kcal/mol, respectively. The reaction energy for the dimerization process is predicted to be – 17.2 kcal/mol at the MP4(SDTQ)//MP2 level corrected for ZPE. Calculations at the G1 level gave a corresponding value of – 16.4 kcal/mol. The equilibrium constant for the association to thetrans dimer is estimated to beK p =259 atm, indicating that the dimer should be an observable species in the gas phase.  相似文献   

2.
The structure and stability of classical and bridged C2H 3 + is reinvestigated. The SCF and CEPA-PNO computations performed with flexibles andp basis sets including twod-sets on carbon confirm our previous results. We find the protonated acetylene structure to be more stable than the vinyl cation by 3.5–4 kcal/mol. The energy barrier for the interconversion of these two structures is at most a few tenths of a kcal/mol. The equilibrium SCF geometries of Weberet al. [15] are affected insignificantly by further optimization at the CEPA-PNO level. Several structures for the interaction of C2H 3 + with HF have been investigated at the SCF level. With our largest basis set which includes a complete set of polarization functions we find a remarkable levelling of the stabilities of most of the structures. In these cases the stabilization energy ΔE ranges from −10 to −13 kcal/mol.  相似文献   

3.
The far-infrared spectrum of gaseous fluoromethyl methyl ether, FCH2OCH3, along with three of the deuterium isotopes, has been recorded at a resolution of 0.10 cm–1 in the 350 to 50 cm–1 region. The fundamental asymmetric torsional and methyl torsional modes are extensively mixed and have been observed at 182 and 132 cm–1, respectively, for the stablegauche conformer with the lower frequency band having several excited states falling to lower frequency. An estimate is given for the potential function governing the asymmetric rotation. On the basis of a one-dimensional model the barrier to internal rotation of the methyl moiety is determined to be 527±9 cm–1 (1.51±0.03 kcal/mol). A complete assignment of the vibrational fundamentals for all four isotopic species observed from the infrared (3500 to 50 cm–1) spectra of the gas and solid and from the Raman (3200 to 10 cm–1) spectra of the gas, liquid, and solid is proposed. No evidence could be found in any of the spectra for the high-energytrans conformer. All of these data are compared to the corresponding quantities obtained from ab initio Hartree-Fock gradient calculations employing the 3-21G and 6-31G* basis sets along with the 6-31G* basis set with electron correlation at the MP2 level. Additionally, completer 0 geometries have been determined from the previously reported microwave data and carbon-hydrogen distances determined from infrared studies. The heavy-atom structural parameters (distances in Å, angles in degrees) arer(C1-F) = 1.395 ± 0.005;r(C1-O) = 1.368 ± 0.007;r(C2-O) = 1.426 ±0.003; FC1O = 111.33 ± 0.25; C1OC2 = 113.50 ± 0.18 and dih FC1OC2 = 69.12 ± 0.26. All of these results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

4.
The geometric parameters of the isomers HN2O+, HPNO+, and HP2O+ were calculated by the nonempirical SCF/3-21G* method and their relative energies were determined with consideration of the electronic correlation in the MP3/DEHD + PS approximation. According to the calculations, protonation of N2O, PNO, and P2O molecules should preferably take place at the oxygen atom. Isomers with a quasilinear NNO and PNO backbone are most advantageous in HN2O+ and HPNO+, and cyclic isomers are 60 and 30 kcal/mole less stable, respectively. On the contrary, the cyclic form is more stable for HPO 2 + (by 10 kcal/mole). The bond at the attacked atom usually weakens (breaks) and the neighboring (opposite) bonds are strengthened in protonation. Protonation of P2O stabilizes the cyclic isomer by 15 kcal/mole more strongly than the "open" isomer, resulting in inversion of their position on the energy scale. In the case of N2O and PNO, the relative position of the cyclic and basic isomers virtually does not change, but the linear NPO isomer is destabliized. The stability of the cyclic isomers in comparison to the "open" isomers increases on substitution of N atoms by P atoms in both molecules of N2O, PNO, and P2O and in their ions HN2O+, HPNO+, and HP2O+. This tendency probably holds in subsequent transition to As and Sb atoms.Institute of New Chemical Problems, Russian Academy of Sciences, 142432 Chernogolovka. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 126–134, January, 1992.  相似文献   

5.
The rate constant value of k 1 = (6.05 ± 0.20)×109 cm3 mol–1 s–1 (with ± 1 error) has been determined for the reaction OH + CH2F2 (1) by applying the discharge-flow/resonance-fluorescence method at 298 K.  相似文献   

6.
Gas-phase reaction of acetylene with HgCl2 resulting in -chlorovinylmercury derivatives and their interaction with Cl and I anions and KI molecule was studied by the ab initio MP2 method with the Dunning—Hay double zeta basis set and LanL pseudopotential for Hg, K, and I atoms. The reaction was shown to proceed via a -complex of acetylene and HgCl2 (the calculated enthalpy of formation is –6.5 kcal mol–1). According to calculations, the activation energy of formation of cis--chlorovinylmercury chloride from acetylene and HgCl2 is 31 kcal mol–1. Chloride and iodide anions and KI molecule are readily added to both cis- and trans-isomer of -chlorovinylmercury chloride to give stable species.  相似文献   

7.
The reliability of the two-layer own N-layered integrated molecular orbital and molecular mechanics (ONIOM) method was examined for the SN2 reaction CH(4–n)Cln+OH. In the ONIOM calculation, only the methyl chloride and OHwere treated at a high level and the effect of polychlorination was taken into account only at a low level. The ONIOM results were compared with the target CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ results obtained by Borisov etal. [(2001) J. Phys. Chem. A 105:7724]. The ONIOM[MP2/aug-cc-pVDZ:B3LYP/6-31+G(d)] was found to reproduce well the target geometry and energy at the MP2/aug-cc-pVDZ level. The single-point improved energetics at the ONIOM[CCSD(T)/aug-cc-pVDZ:MP2/6-31+G(d)] is found to give results nearly as accurate as the target CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ results. The substantially reduced cost, 20% for optimization and 5% for single-point improved energy of the target cost for n=4, as well as small errors suggest that ONIOM is a powerful tool for accurate potential-energy surfaces of the reaction of large polyhalohydrocarbons.  相似文献   

8.
Raman spectra of aqueous Zn(II)–perchlorate solutions were measured over broad concentration (0.50–3.54 mol-L–1) and temperature (25–120°C) ranges. The weak polarized band at 390 cm–1 and two depolarized modes at 270 and 214 cm–1 have been assigned to 1(a 1g), 2(e g), and 5(f 2g) of the zinc–hexaaqua ion. The infrared-active mode at 365 cm–1 has been assigned to 3(f 1u). The vibrational analysis of the species [Zn(OH2) 2 + ] was done on the basis of O h symmetry (OH2 as point mass). The polarized mode 1(a 1g)-ZnO6 has been followed over the full temperature range and band parameters (band maximum, full width at half height, and intensity) have been examined. The position of the 1(a 1g)-ZnO6 mode shifts only about 4 cm–1 to lower frequencies and broadens by about 32 cm–1 for a 95°C temperature increase. The Raman spectroscopic data suggest that the hexaaqua–Zn(II) ion is thermodynamically stable in perchlorate solution over the temperature and concentration range measured. These findings are in contrast to ZnSO4 solutions, recently measured by one of us, where sulfate replaces a water molecule of the first hydration sphere. Ab initio geometry optimizations and frequency calculations of [Zn(OH2) 2 + ] were carried out at the Hartree–Fock and second-order Møller–Plesset levels of theory, using various basis sets up to 6-31 + G*. The global minimum structure of the hexaaqua–Zn(II) species corresponds with symmetry T h. The unscaled vibrational frequencies of the [Zn(OH2) 2 + ] are reported. The unscaled vibrational frequencies of the ZnO6, unit are lower than the experimental frequencies (ca. 15%), but scaling the frequencies reproduces the measured frequencies. The theoretical binding enthalpy for [Zn(OH2) 2 + ] was calculated and accounts for ca. 66% of the experimental single-ion hydration enthalpy for Zn(II).Ab initio geometry optimizations and frequency calculations are also reported for a [Zn(OH2) 2 18 ] (Zn[6 + 12]) cluster with 6 water molecules in the first sphere and 12 in the second sphere. The global minimum corresponds with T symmetry. Calculated frequencies of the zinc [6 + 12] cluster correspond well with the observed frequencies in solution. The 1-ZnO6 (unscaled) mode occurs at 388 cm–1 almost in perfect correspondence to the experimental value. The theoretical binding enthalpy for [Zn(OH2) 2 18 ] was calculated and is very close to the experimental single ion-hydration enthalpy for Zn(II). The water molecules of the first sphere form strong hydrogen bonds with water molecules in the second hydration shell because of the strong polarizing effect of the Zn(II) ion. The importance of the second hydration sphere is discussed.  相似文献   

9.
The energy hypersurface for the attack of fluoride ion on methyl fluoride has been explored with ab initio LCAO-SCF calculations at a split-valence basis set level. Transition states for frontside and backside attack have been located. In addition to transition states, two possible F-CH3F clusters have been identified. The transition state for the substitution of fluoride with retention of configuration is found to be 56 kcal/mol higher than the transition state for inversion of configuration. The transition state for hydride displacement with inversion is 62 kcal/mol above the transition state for fluoride substitution with inversion.  相似文献   

10.
Zirconium (IV)-n-butoxide and tungstophosphoric acid (WP) were co-gelled at pH 3, 5 and 7 with HCl acid, C2H4O2 acid and NH4OH, respectively. Pyridine adsorption bands at 1610 and 1442 cm–1 corresponding to Lewis acidic sites were observed by FTIR spectroscopy. Acidity determined by ammonia thermodesorption shows values around 1100 mol of NH3/g, which correspond to solids showing super acidity. It was found that the incorporation of WP to gelling zirconia delay the formation of tetragonal zirconia. Raman spectroscopy shows the stabilization of the Keggin structure on zirconia thermally treated at 400°C.  相似文献   

11.
Fifteen unique energy minima and thirteen transition states on the C 2H2B2 potential surface have been located and optimized at the MP2 level of theory with the 6-311G(d,p) basis set. The planar four-membered ring isomer , 1, an analog of cyclobutadiene, is a transition state lying 37 kcal/mol above the nonplanar four-membered ring , 3. The planar , 10, is the second most stable species found, lying 72.2 kcal/mol below 3. The nonplanar, butterfly-shaped ring, 4, is a local minimum 33.7 kcal/mol more stable than 3. A four-membered ring isomer with alternating boron–carbon locations, , 5, lies 67.0 kcal/mol below 3 and 33.3 kcal/mol below 4. The ring of 5 is planar with one hydrogen above and one below the plane (C 2h symmetry). The borylene-substituted boracyclopropene, , 8, is a planar local minimum lying 36.0 kcal/mol above 5. The most stable C2H2B2 isomer found was the planar, four-membered ring system 22 (D 2h symmetry) composed of two BCC three-membered rings fused across the C-C bond. Structure 22 lies 22.2 kcal/mole below 10, 105.4 kcal/mol below 3, 71.7 kcal/mol below 4, and 38.2 kcal/mol below 5. Isomer 22 is the structural analog of the trialene form of C4H2. The most stable linear isomer, HB BH, 26, was surprisingly 50.5 kcal/mol less stable than 22. The stabilities of the two most stable cyclic isomers 10 and 22 may be explained by aromaticity.  相似文献   

12.
Ab initio calculations have been carried out for the ground state of H 5 + in order to predict its equilibrium geometry, binding energy, enthalpy of formation, and the features of the H2 · H 3 + interaction at large and intermediate intermolecular distances. The extended basis set of Gaussian functions was carefully optimized to describe the various kinds of intermolecular interactions. Electron correlation was accounted for by means of CI calculations. Different from previous studies we find a D 2d equilibrium geometry with D e = 7.4 kcal/mol and H 300 0 –8.7 kcal/mol. The potential surface turns out to be extremely shallow in the vicinity of the D 2d structure which results in a great mobility of the central nucleus at room temperature.  相似文献   

13.
Summary Ab initio molecular orbital calculations give small stabilization energies for the various Na(CH4)+ adducts (less than 4 kcal mol–1), but predict a stronger binding for the copper compounds (about 13 kcal mol–1). The different behaviour of Na+ and Cu+, already present at the SCF level, is reinforced by electron correlation. This can be attributed to an important contribution of the dispersion energy to the binding energy of the copper ion: about 40% of the total, including basis set superposition corrections.Dedicated to Mrs A. Pullman  相似文献   

14.
Five different structures of CH5 + and one structure of CH5 are calculated using a gaussian basis both in the SCF approximation and with the inclusion of electron correlation in the independent electron pair approximation (IEPA). While on SCF level the C sstructure of CH5 + has to lowest energy, the energy difference between the C sand C 2vstructures becomes negligible if correlation is included. In contrast to this the approach of a proton to CH4 at large and intermediate distances is most favorable towards a corner of the CH4 tetrahedron which means a structure. The decomposition of CH5 + into CH3 + and H2 requires 20kcal/mol on SCF level and 40 kcal/mol if correlation is included.  相似文献   

15.
The far-infrared spectra (350–35 cm–1) of gaseous ethyl methyl ether-d 0 and ethyl methyl-d 3-ether have been recorded at a resolution of 0.10 cm–1. For the d 0 species, the fundamental asymmetric torsion of the more stable trans conformer (two methyl moieties are trans to one another) has been observed at 115.40 cm–1 with four upper state transitions falling to lower frequency, whereas, for the gauche form, it has been observed at 93.56 cm–1 with two excited states falling to lower frequency. the corresponding series for the d 3 species start from 106.00 and 87.10 cm–1, respectively. From these data, the asymmetric torsional potential coefficients for the d 0 species have been determined to be: V 1 = 572 ± 30; V 2 = 85 ± 8; V 3 = 619 ± 30; V 4 = 175 ± 18, and V 6 = –28 ± 3 cm–1. The trans to gauche and gauche to gauche barriers were calculated to be 958 cm–1 (11.5 kJ/mol) and 631 cm–1 (7.55 kJ/mol), respectively, with an energy difference of 550 ± 6 cm–1 (6.58 ± 0.07 kJ/mol). Utilizing three conformer pairs, variable temperature studies (–105 to –150°C) of the infrared spectra of the d 0 sample dissolved in liquid krypton gave an enthalpy difference of 547 ± 28 cm–1 (6.54 ± 0.33 kJ/mol) with the trans conformer the more stable rotamer. It is estimated that there is only 4% of the gauche conformer present at ambient temperatures. The structural parameters, conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies, which have been determined experimentally, are compared to those obtained from ab initio gradient predictions from RHF/6-31G* and with full electron correlation at the MP2 level with three different basis sets. The adjusted r 0 structural parameters have been obtained for the trans conformer from combined ab initio MP2/6-311+G** predictions and previously reported microwave rotational constants. The reported distances should be accurate to 0.003 Å and the angles to 0.5°. These results are compared to the corresponding quantities obtained for some similar molecules.  相似文献   

16.
SCF and MC-SCF/CI calculations were carried out on the low-lying electronic states of NO2, NO 2 + and NO 2 , using a double-zeta quality basis set of contracted Gaussian functions. The calculations were performed primarily at the equilibrium geometry (R NO = 2.25 ao, ONO=134 °) of theX 2 A 1 state of NO2. SCF calculations on NO 2 + in a linear conformation were also performed. Results are presented and compared with experiment and other calculations.Research supported in part by Air Force Delivery Orders F33615-72-M-5015 and MIPR889474-00117 and Air Force Office of Scientific Research and in part by the United States Energy Research and Development Administration.  相似文献   

17.
The molecular structures of theendo (1a) andexo (1b) isomers of B4H8CO have been optimized at the ab initio MP2(Full)/6-31G* level of theory. The agreement of the computed geometrical parameters with the recently published electron-diffraction (GED) data is very good, even though a number of geometrical constraints were applied in the experimental determination. The IGLO (individual gauge for localized orbitals)11B NMR chemical shifts, calculated at the II//MP2/6-31G* level, are also in accord with experiment. The formation of1a and1b by association of B4H8 and CO is computed to be exothermic by 22.8 and 22.2 kcal/mol, respectively, at the MP2(Full)/6-31G*//MP2(Full)/6-31G* + ZPE(6-31G*) level of theory. The Lewis acid strength of B4H8 toward CO is comparable to that of BH3.  相似文献   

18.
The stability and geometrical structure of the fluoronium ion is investigated using the onedeterminant SCF LCAO MO method. The equilibrium geometry is characterized by a bond length of d(FH)=0.95 Å and a bond angle of 114.75°. The proton binding energy is determined to be 120.1 kcal/mole. The molecules FH 3 2+ and FH3 are found to be unstable. A binding energy of 30.7 kcal/mole is obtained for the hydrogen bond formation between the systems FH 2 + and FH. In the minimum energy structure the central proton is situated midway between the two F atoms in a symmetrical single minimum potential. The general behavior of the potential curves of the di-solvated proton involving NH3, OH2, and FH as solvent molecules is discussed. In all these cases double minimum potentials are found, if the equilibrium separation between the heavy atoms is larger than approximately 2.4 Å, and single minimum potential for separations smaller than this value.  相似文献   

19.
Ab initio SCF studies were performed with Cu and F basis sets of near-Hartree-Fock (HF) limit quality to obtain accurate SCF results for the molecular ground state properties of CuF+, CuF, CuF, CuF2, and CuF2 , as well as for the first two low-lying excited states of CuF2. A study on the effects of electron correlation was carried out by Møller-Plesset (MP) and configuration interaction (Cl) calculations. The effect of relativity on the63Cu nuclear quadrupole coupling in CuF was determined by use of a coupled HF procedure for a first-order spin-orbital-averaged Pauli operator. At the HF level the63Cu coupling constant was found to be 35.8 MHz (in e2qQ h–1), while allowing for relativity the value was reduced to 29.1 MHz, which is in better agreement with the experimental value of 22.0 MHz. The calculated molecular properties for CuF [r e = 1.737 Å,D e=4.38 eV, e = 562 cm–1 (MP4);r e= 1.796 Å,D e = 3.91 eV, e=585 cm–1 (CISD)] were in good agreement with experiment (r e = 1.745 Å,D e = 4.43 eV, e=623 cm–1). The adiabatic ground-state potential curve of CuF+ avoids crossing near the equilibrium distance between the two ionic potential curves Cu+-F and Cu2+-F. At the crossing point the Cu and F electric field gradients show a sharp discontinuity.  相似文献   

20.
Four 9H and four 7H tautomers of DNA base xanthine were studied by the ab initio LCAO-MO method at the MP2/6-311G**//HF/6-31G** and MP2/6-31G**//HF/6-31G** approximations. All calculated structures are minima at the HF/6-31G** potential energy surface with the dioxo 7H tautomer (A1) being the global minimum. The second most stable tautomer, dioxo-9H (B1) is by 9 kcal/mol less stable. For the A1 B1 transition the calculated MP2 energy gap corresponds to the equilibrium constant of 2 × 10–7. Therefore, only the major tautomeric form A1 is predicted to be detectable in the gas phase. The 7H and 9H groups of tautomers are discussed separately. Within both groups, the dioxo form (A1-7H, B1-9H) is the most stable one and is succeeded by the 2-dihydroxy (A2, B2) form. However, while the energy difference between A1 and A2 is 10 kcal/mol, the energy difference between B1 a B2 is only 2 kcal/mol. The effect of polar environment was estimated by the SCRF method, using a spherical cavity, at the HF/6-31G** level. These calculations did not change the gas phase stability order of the tautomers. However, the energy difference between A1 and B1 decreased from 9 kcal/mol at the HF/6-31G** level to 4 kcal/mol at the SCRF HF/6-31G** level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号