首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The TaSi(n) (n=1-13) clusters with doublet, quartet, and sextet spin configurations have been systematically investigated by a relativistic density functional theory with the generalized gradient approximation available in Amsterdam density functional program. The total bonding energies, equilibrium geometries, Mulliken populations as well as Hirshfeld charges of TaSi(n) (n=1-13) clusters are calculated and presented. The emphasis on the stabilities and electronic properties is discussed. The most stable structures of the small TaSi(n) (n=1-6) clusters and the evolutional rule of low-lying geometries of the larger TaSi(n) (n=7-13) clusters are obtained. Theoretical results indicate that the most stable structure of TaSi(n) (n=1-6) clusters keeps the similar framework as the most stable structure of Si(n+1) clusters except for TaSi(3) cluster. The Ta atom in the lowest-energy TaSi(n) (n=1-13) isomers occupies a gradual sinking site, and the site moves from convex, to flatness, and to concave with the number of Si atom varying from 1 to 13. When n=12, the Ta atom in TaSi(12) cluster completely falls into the center of the Si frame, and a cagelike TaSi(12) geometry is formed. Meanwhile, the net Mulliken and Hirsheld populations of the Ta atom in the TaSi(n) (n=1-13) clusters vary from positive to negative, manifesting that the charges in TaSi(n) (n>/=12) clusters transfer from Si atoms to Ta atom. Additionally, the contribution of Si-Si and Si-Ta interactions to the stability of TaSi(n) clusters is briefly discussed. Furthermore, the investigations on atomic averaged binding energies and fragmentation energies show that the TaSi(n) (n=2,3,5,7,10,11,12) clusters have enhanced stabilities. Compared with pure silicon clusters, a universal narrowing of highest occupied molecular orbital-lowest unoccupied molecular orbital gap in TaSi(n) clusters is found.  相似文献   

2.
The geometries, stabilities, and electronic and magnetic properties of small-sized Zr(n) (n=2-8) clusters with different spin configurations were systematically investigated by using density functional approach. Emphasis is placed on studies that focus on the total energies, equilibrium geometries, growth-pattern behaviors, fragmentation energies, and magnetic characteristics of zirconium clusters. The optimized geometries show that the large-sized low-lying Zr(n) (n=5-8) clusters become three-dimensional structures. Particularly, the relative stabilities of Zr(n) clusters in terms of the calculated fragmentation energies and second-order difference of energies are discussed, exhibiting that the magic numbers of stabilities are n=2, 5, and 7 and that the pentagonal bipyramidal D(5h) Zr(7) geometry is the most stable isomer and a nonmagnetic ground state. Furthermore, the investigated magnetic moments confirm that the atomic averaged magnetic moments of the Zr(n) (n not equal to 2) display an odd-even oscillation features and the tetrahedron C(s) Zr(4) structure has the biggest atomic averaged magnetic moment of 1.5 mu(B)/at. In addition, the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital gaps indicate that the Zr(n) (n=2 and 7) clusters have dramatically enhanced chemical stabilities.  相似文献   

3.
The neutral and charged YbSi(n) (n = 1-6) clusters considering different spin configurations have been systematically investigated by using the relativistic density functional theory with generalized gradient approximation. The total bonding energies, equilibrium geometries, Mulliken populations (MP), Hirshfeld charges (HC), fragmentation energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps are calculated and discussed. The optimized geometries indicate that the most stable YbSi(n) (n = 1-6) clusters keep basically the analogous frameworks as the low-lying Si(n)(+1) clusters, while the charged species deviate from their neutral counterparts, and that the doped Yb tends to occupy the substitutional site of the neutral and charged YbSi(n) isomers. The relative stabilities are investigated in terms of the calculated fragmentation energies, exhibiting enhanced stabilities for the remarkably stable neutral and charged YbSi2 and YbSi5 clusters. Furthermore, the calculated MP and HC values show that the charges of the neutral and charged YbSi(n) clusters transfer from the Yb atom to Si(n) atoms and the Yb atom acts as an electron donor, and that the f orbitals of the Yb atom in the neutral and charged YbSi(n) clusters behave as core without involvement in chemical bonding. The calculated HOMO-LUMO gaps indicate that the YbSi2 and YbSi4+ clusters have stronger chemical stabilities. Comparisons of the Yb-doped Si(n) (n = 1-6) with available theoretical results of transition-metal-doped silicon clusters are made. The growth pattern is investigated also.  相似文献   

4.
The size-selective Zr(2)Si(n) (n = 16-24) caged clusters have been investigated by density functional approach in detail. Their geometries, relative stabilities, electronic properties and ionization potentials have been discussed. The dominant structures of bimetallic Zr(2) doped silicon caged clusters gradually transform to Zr(2) totally encapsulated structures with increase of the clustered size from 16 to 24, which is good agreement with the recent experimental result (J. Phys. Chem. A. 2007, 111, 42). Two novel isomers, i.e., naphthalene-like and dodecahedral Zr(2)Si(20) clusters, are found as low-lying conformers. Furthermore, the novel quasi-1D naphthalene-like Zr(n)Si(m) nanotubes are first reported. The second-order energy differences reveal that magic numbers of the different sized neutral Zr(2)Si(n) clusters appear at n = 18, 20 and 22, which are attributed to the fullerene-like, dodecahedral and polyhedral structures, respectively. The HOMO-LUMO gaps (>1 eV) of all the size-selective Zr(2)Si(n) clusters suggest that encapsulation of the bimetallic zirconium atoms is favorable for increasing the stabilities of silicon cages.  相似文献   

5.
The electronic properties of germanium and tin clusters containing a transition- or lanthanide-metal atom from group 3, 4, or 5, MGe(n) (M = Sc, Ti, V, Y, Zr, Nb, Lu, Hf, and Ta) and MSn(n) (M = Sc, Ti, Y. Zr, and Hf), were investigated by anion photoelectron spectroscopy at 213 nm. In the case of the group 3 elements Sc, Y, and Lu, the threshold energy of electron detachment of MGe(n)(-) exhibits local maxima at n = 10 and 16, while in the case of the group 4 elements Ti, Zr, and Hf, it exhibits a local minimum only at n = 16, associated with the presence of a small bump in the spectrum. A similar behavior is observed for MSn(n)(-) around n = 16, and these electronic characteristics of MGe(n) and MSn(n) are closely related to those of MSi(n). Compared to MSi(n), however, the larger cavity size of a Ge(n) cage allows metal atom encapsulation at a smaller size n. A cooperative effect between the electronic and geometric structures of clusters with a large cavity of Ge(16) or Sn(16) is discussed together with the results of experiments that probe their geometric stability via their reactivity to H(2)O adsorption.  相似文献   

6.
Density functional theory involving generalized gradient approximation correlation functional is used to investigate the cluster series La @Si n (n=1-21). We find that the growth process of La @Si n (n=1-21) could be divided into three stages: First, La atom adheres to other Si atoms in the size range of 1相似文献   

7.
The geometries, stabilities, electronic properties, and magnetism of FeB(n) clusters up to n=10 are systematically studied with density functional theory. We find that our optimized structures of FeB(2), FeB(3), FeB(4), and FeB(5) clusters are more stable than those proposed in previous literature. The results show that it is favorable for the Fe atom to locate at the surface, not at the center of the cluster, and that FeB(4) and FeB(9) clusters exhibit high stability. For all the FeB(n) clusters studied, we find the charge transfer from Fe to B site and the coexistence of ionic and covalent bonding characteristics. The computed total magnetic moments of the lowest-energy structures oscillate with the cluster size and are quenched at n=4, 6, 8, and 10.  相似文献   

8.
A systematic quantum chemical investigation on the electronic, geometric and energetic properties of Au(n)V clusters with n = 1-14 in both neutral and anionic states is performed using BP86/cc-pVTZ-PP calculations. Most clusters having an even number of electrons prefer a high spin state. For odd-electron systems, a quartet state is consistently favoured as the ground state up to Au(8)V. The larger sized Au(10)V, Au(12)V and Au(14)V prefer a doublet state. The clusters prefer 2D geometries up to Au(8)V involving a weak charge transfer. The larger systems bear 3D conformations with a more effective electron transfer from Au to V. The lowest-energy structure of a size Au(n)V is built upon the most stable form of Au(n-1)V. During the growth, V is endohedrally doped in order to maximize its coordination numbers and augment the charge transfer. Energetic properties, including the binding energies, embedding energies and second-order energy differences, show that the presence of a V atom enhances considerably the thermodynamic stability of odd-numbered gold clusters but reduces that of even-numbered systems. The atomic shape has an apparently more important effect on the clusters stability than the electronic structure. Especially, if both atomic shape and electronic condition are satisfied, the resulting cluster becomes particularly stable such as the anion Au(12)V(-), which can thus combine with the cation Au(+) to form a superatomic molecule of the type [Au(12)V]Au. Numerous lower-lying electronic states of these clusters are very close in energy, in such a way that DFT computations cannot clearly establish their ground electronic states. Calculated results demonstrate the existence of structural isomers with comparable energy content for several species including Au(9)V, Au(10)V, Au(13)V and Au(14)V.  相似文献   

9.
The structures, binding energies, and electronic properties of one oxygen atom (O) and two oxygen atoms (2O) adsorption on silicon clusters Si(n) with n ranging from 5 to 10 are studied systematically by ab initio calculations. Twelve stable structures are obtained, two of which are in agreement with those reported in previous literature and the others are new structures that have not been proposed before. Further investigations on the fragmentations of Si(n)O and Si(n)O2 (n = 5-10) clusters indicate that the pathways Si(n)O --> Si(n-1) + SiO and Si(n)O2 --> Si(n-2) + Si2O2 are most favorable from thermodynamic viewpoint. Among the studied silicon oxide clusters, Si8O, Si9O, Si5O2 and Si8O2 correspond to large adsorption energies of silicon clusters with respect to O or 2O, while Si8O, with the smallest dissociation energy, has a tendency to separate into Si7 + SiO. Using the recently developed quasi-atomic minimal-basis-orbital method, we have also calculated the unsaturated valences of the neutral Si(n) clusters. Our calculation results show that the Si atoms which have the largest unsaturated valences are more attractive to O atom. Placing O atom right around the Si atoms with the largest unsaturated valences usually leads to stable structures of the silicon oxide clusters.  相似文献   

10.
Density-functional theory with generalized gradient approximation for the exchange-correlation potential has been used to calculate the structural and electronic structure of Si(n)C(n) (n=1-10) clusters. The geometries are found to undergo a structural change from two dimensional to three dimensional when the cluster size n equals 4. Cagelike structures are favored as the cluster size increases. A distinct segregation between the silicon and carbon atoms is observed for these clusters. It is found that the C atoms favor to form five-membered rings as the cluster size n increases. However, the growth motif for Si atoms is not observed. The Si(n)C(n) clusters at n=2, 6, and 9 are found to possess relatively higher stability. On the basis of the lowest-energy geometries obtained, the size dependence of cluster properties such as binding energy, HOMO-LUMO gap, Mulliken charge, vibrational spectrum, and ionization potential has been computed and analyzed. The bonding characteristics of the clusters are discussed.  相似文献   

11.
The density functional method with relativistic effective core potential has been employed to investigate systematically the geometrical structures, relative stabilities, growth-pattern behaviors, and electronic properties of small bimetallic M(2)Au(n) (M = Ag, Cu; n = 1-10) and pure gold Au(n) (n ≤ 12) clusters. The optimized geometries reveal that M(2) substituted Au(n+2) clusters and one Au atom capped M(2)Au(n-1) structures are dominant growth patterns of the stable alloyed M(2)Au(n) clusters. The calculated averaged atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. The analytic results exhibit that the planar structure Ag(2)Au(4) and Cu(2)Au(2) isomers are the most stable geometries of Ag(2)Au(n) and Cu(2)Au(n) clusters, respectively. In addition, the HOMO-LUMO gaps, charge transfers, chemical hardnesses and polarizabilities have been analyzed and compared further.  相似文献   

12.
We have obtained the ground state and the equilibrium geometries of Au(n) (-) and Au(n-1)Cu(-) in the size range of n=13-19. We have used first principles density functional theory within plane wave and Gaussian basis set methods. For each of the cluster we have obtained at least 100 distinct isomers. The anions of gold clusters undergo two structural transformations, the first one from flat cage to hollow cage and the second one from hollow cage to pyramidal structure. The Cu doped clusters do not show any flat cage structures as the ground state. The copper doped systems evolve from a general 3D structure to hollow cage with Cu trapped inside the cage at n=16 and then to pyramidal structure at n=19. The introduction of copper atom enhances the binding energy per atom as compared to gold cluster anions.  相似文献   

13.
The equilibrium geometries, stabilities, and electronic properties of the TaSi(n)+ (n = 1-13, 16) clusters are investigated systematically by using the relativistic density functional method with generalized gradient approximation. The small-sized TaSi(n)+ clusters with slight geometrical adjustments basically keep the frameworks that are analogous to the neutrals while the medium-sized charged clusters significantly deform the neutral geometries, which are confirmed by the calculated AIP and VIP values. Furthermore, the optimized geometries of the charged clusters agree with the experimental results of Hiura and co-workers (Hiura, H.; Miyazaki, T.; Kanayama, T. Phys. Rev. Lett. 2001, 86, 1733). The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gaps of the charged clusters are generally increased as the cluster size goes from n = 1 to 13; and the large HOMO-LUMO gaps of charged clusters resulting from the positive charge indicate that their chemical stabilities are stronger than their neutral counterparts, especially for n = 4, 6, and 7 clusters. Additionally, the contributions of the d orbitals of the Ta atom to the HOMO and LUMO reveal that the chemical activity of the d orbitals of the Ta atom decreases gradually as the number of silicon atoms increases. This interesting finding is in good agreement with the recent experimental results on the reactive activities of the H2O and transition-metal silicon clusters (Koyasu, K.; Akutsu, M.; Mitsui, M.; Nakajima, A. J. Am. Chem. Soc. 2005, 127, 4998). Generally, the positive charge significantly influences the electronic and geometric structures of the charged clusters. Finally, the most stable neutral and charged TaSi16 clusters are found to be fullerene-like structures and the HOMO-LUMO gap in charged form is detectable experimentally.  相似文献   

14.
The geometries, stabilities, and electronic properties of Ge(n) and CuGe(n) (n = 2-13) clusters have been systematically investigated by using density-functional approach. According to optimized CuGe(n) geometries, growth patterns of Cu-capped Ge(n) or Cu-substituted Ge(n+1) clusters for the small- or middle-sized CuGe(n) clusters as well as growth patterns of Cu-concaved Ge(n) or Ge-capped CuGe(n-1) clusters for the large-sized CuGe(n) clusters are apparently dominant. The average atomic binding energies and fragmentation energies are calculated and discussed; particularly, the relative stabilities of CuGe10 and Ge10 are the strongest among all different sized CuGe(n) and Ge(n) clusters, respectively. These findings are in good agreement with the available experimental results on CoGe10- and Ge10 clusters. Consequently, unlike some transition metal (TM)Si12, the hexagonal prism CuGe12 is only low-lying structure; however, the basket-like structure is located as the lowest-energy structure. Different from some TM-doped silicon clusters, charge always transfers from copper to germanium atoms in all different sized clusters. Furthermore, the calculated highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) gaps are obviously decreased when Cu is doped into the Ge(n) clusters, together with the decrease of HOMO-LUMO gaps, as the size of clusters increases. Additionally, the contribution of the doped Cu atom to bond properties and polarizabilities of the Ge(n) clusters is also discussed.  相似文献   

15.
利用密度泛函理论, 得到了ZrnB(n=1-13)团簇的基态结构, 计算并讨论了团簇能量的二阶差分和离解能. 结果表明, n=2, 5, 12时, 相应团簇较稳定, 特别是Zr5B团簇的稳定性最高. 同时分析了ZrnB团簇的电子性质及磁性, 结果显示能隙随n值的增大出现奇偶振荡趋势, 特别是Zr12B团簇的能隙只有0.015 eV, 表明该团簇已具有金属性. 电荷转移随n值增大, 整体呈增大趋势, 除了二聚体ZrB, 电荷由B原子转移到Zr原子. 利用Mulliken布居分析得到二聚体ZrB(5.000 μB)和团簇Zr4B(3.000 μB)的磁矩较大, ZrnB团簇中总磁矩主要来自Zr原子的4d轨道.  相似文献   

16.
The geometries, stabilities, and electronic properties of Bn and AlBn clusters, up to n=12, have been systematically investigated by using the density-functional approach. The results of Bn clusters are in good agreement with previous conclusions. When the Al atom is doped in Bn clusters, the lowest-energy structures of the AlBn clusters favor two-dimensional and can be obtained by adding one Al atom on the peripheral site of the stable Bn when n相似文献   

17.
The geometric and electronic structures of Si(n), Si(n)-, and PSi(n-1) clusters (2 < or = n < or = 13) have been investigated using the ab initio molecular orbital theory formalism. The hybrid exchange-correlation energy functional (B3LYP) and a standard split-valence basis set with polarization functions (6-31+G(d)) were employed to optimize geometrical configurations. The total energies of the lowest energy isomers thus obtained were recalculated at the MP2/aug-cc-pVTZ level of theory. Unlike positively charged clusters, which showed similar structural behavior as that of neutral clusters [Nigam et al., J. Chem. Phys. 121, 7756 (2004)], significant geometrical changes were observed between Si(n) and Si(n)- clusters for n = 6, 8, 11, and 13. However, the geometries of P substituted silicon clusters show similar growth as that of negatively charged Si(n) clusters with small local distortions. The relative stability as a function of cluster size has been verified based on their binding energies, second difference in energy (Delta2 E), and fragmentation behavior. In general, the average binding energy of Si(n)- clusters is found to be higher than that of Si(n) clusters. For isoelectronic PSi(n-1) clusters, it is found that although for small clusters (n < 4) substitution of P atom improves the binding energy of Si(n) clusters, for larger clusters (n > or = 4) the effect is opposite. The fragmentation behavior of these clusters reveals that while small clusters prefer to evaporate monomer, the larger ones dissociate into two stable clusters of smaller size. The adiabatic electron affinities of Si(n) clusters and vertical detachment energies of Si(n)- clusters were calculated and compared with available experimental results. Finally, a good agreement between experimental and our theoretical results suggests good prediction of the lowest energy isomeric structures for all clusters calculated in the present study.  相似文献   

18.
We carry out a systematic search for the atomic structures of silicon cluster cations and anions in the size range n=31-50 using density functional theory in the generalized-gradient approximation. The obtained lowest-energy candidates feature cagelike structures. We find that the computed binding energies and the dissociation pathways as well as the mobilities of our lowest-energy isomers of the cations are all in good agreement with the measured data from experiments. Furthermore, based on these isomers, we reveal that the steplike feature appearing in the measured high-resolution mobilities can be correlated with the corresponding fullerenes explicitly, which strongly support the notion that endohedral silicon fullerenelike structures are the most favored growth pattern for silicon clusters in the range n=31-50. Our calculation and analysis suggest that the proposed isomers are probably very close to the major-abundance isomers observed in experiments.  相似文献   

19.
Equilibrium geometries, charge distributions, stabilities, and electronic properties of the Ag-adsorbed (SiO(2))(n) (n=1-7) clusters have been investigated using density functional theory with generalized gradient approximation for exchange-correlation functional. The results show that the Ag atom preferably binds to silicon atom with dangling bond in nearly a fixed direction, and the incoming Ag atoms tend to cluster on the existing Ag cluster leading to the formation of Ag islands. The adsorbed Ag atom only causes charge redistributions of the atoms near itself. The effect of the adsorbed Ag atom on the bonding natures and structural features of the silica clusters is minor, attributing to the tendency of stability order of Ag(SiO(2))(n) (n=1-7) clusters in consistent with silica clusters. In addition, the energy gaps between the highest occupied and lowest unoccupied molecular orbitals remarkably decrease compared with the pure (SiO(2))(n) (n=1-7) clusters, eventually approaching the near infrared radiation region. This suggests that these small clusters may be an alternative material which has a similar functionality in treating cancer to the large gold-coated silica nanoshells and the small Au(3)(SiO(2))(3) cluster.  相似文献   

20.
The behaviors of the bimetal Mo-Mo doped cagelike silicon clusters Mo2Sin at the size of n=9-16 have been investigated systematically with the density functional approach. The growth-pattern behaviors, relative stabilities, and charge-transfer of these clusters are presented and discussed. The optimized geometries reveal that the dominant growth patterns of the bimetal Mo-Mo doped on opened cagelike silicon clusters (n=9-13) are based on pentagon prism MoSi10 and hexagonal prism MoSi12 clusters, while the Mo2 encapsulated Sin(n=14-16) frames are dominant growth behaviors for the large-sized clusters. The doped Mo2 dimer in the Sin frames is dissociated under the interactions of the Mo2 and Sin frames which are examined in term of the calculated Mo-Mo distance. The calculated fragmentation energies manifest that the remarkable local maximums of stable clusters are Mo2-doped Sin with n=10 and 12; the obtained relative stabilities exhibit that the Mo2-doped Si10 cluster is the most stable species in all different sized clusters. Natural population analysis shows that the charge-transfer phenomena appearing in the Mo2-doped Sin clusters are analogous to the single transition metal Re or W doped silicon clusters. In addition, the properties of frontier orbitals of Mo2-doped Sin (n=10 and 12) clusters show that the Mo2Si10 and Mo2Si12 isomers have enhanced chemical stabilities because of their larger HOMO-LUMO gaps. Interestingly, the geometry of the most stable Mo2Si9 cluster has the framework which is analogous to that of Ni2Ge9 cluster confirmed by recent experimental observation (Goicoechea, J. M.; Sevov, S. C. J. Am Chem. Soc. 2006, 128, 4155).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号