首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorinated olefinic peptide nucleic acid (F-OPA) system was designed as a peptide nucleic acid (PNA) analogue in which the base carrying amide moiety was replaced by an isostructural and isoelectrostatic fluorinated C-C double bond, locking the nucleobases in one of the two possible rotameric forms. By comparison of the base-pairing properties of this analogue with its nonfluorinated analogue OPA and PNA, we aimed at a closer understanding of the role of this amide function in complementary DNA recognition. Here we present the synthesis of the F-OPA monomer building blocks containing the nucleobases A, T, and G according to the MMTr/Acyl protecting group scheme. Key steps are a selective desymmetrization of the double bond in the monomer precursor via lactonization as well as a highly regioselective Mitsunobu reaction for the introduction of the bases. PNA decamers containing single F-OPA mutations and fully modified F-OPA decamers and pentadecamers containing the bases A and T were synthesized by solid-phase peptide chemistry, and their hybridization properties with complementary parallel and antiparallel DNA were assessed by UV melting curves and CD spectroscopic methods. The stability of the duplexes formed by the decamers containing single (Z)-F-OPA modifications with parallel and antiparallel DNA was found to be strongly dependent on their position in the sequence with T(m) values ranging from +2.4 to -8.1 degrees C/modification as compared to PNA. Fully modified F-OPA decamers and pentadecamers were found to form parallel duplexes with complementary DNA with reduced stability compared to PNA or OPA. An asymmetric F-OPA pentadecamer was found to form a stable self-complex (T(m) approximately 65 degrees C) of unknown structure. The generally reduced affinity to DNA may therefore be due to an increased propensity for self-aggregation.  相似文献   

2.
An L-DNA, the mirror-image isomer of natural DNA, has extraordinary nuclease resistance, and thus the molecules should be promising reagents for many applications, such as antisense technology. However, little is known about the structural and thermodynamic properties of DNAs with this modified nucleotide. In this study, we prepared the L-nucleotide (L-dA) and introduced it into oligodeoxyribonucleotides to assess the ability of the L-nucleotide as a functional molecule for many applications based on the DNA hybridization. Two decamers with an L-dA at the center were synthesized and duplexes with the complementary DNA strand were applied to structural and thermodynamic analyses. The structural study by CD spectra showed that the structures of both modified "L/D-D" duplexes were the typical B-form. This result suggests that the global structure of DNA was not collapsed by the introduction of an L-DNA. Thermodynamic parameters (deltaH degrees, deltaS degrees, and deltaG degrees 37) of the duplex formation, determined by UV melting experiments, indicated that the both duplexes were destabilized at about 2.5 to 3.0 kcal mol(-1) by the introduced L-dA, mainly due to an unfavorable enthalpic effect. In conjunction with information by other researchers, these results suggest that the L-DNA affect on the duplex structure and the stability vary locally; thus, the thermodynamic stability of modified L/D-D duplexes should be predictable by the nearest-neighbor thermodynamic parameters.  相似文献   

3.
The syntheses of several norbornene block copolymers containing oligonucleotide and ferrocenyl side chains and their use in the electrochemical detection of DNA are described. Two kinds of DNA-containing block copolymers with either ferrocenyl or dibromoferrocenyl groups were prepared via ring-opening metathesis polymerization (ROMP). Based on these two distinct ferrocene derivatives, a triblock copolymer labeling strategy was developed. With this strategy, the identity of DNA target can be determined by the E1/2s of the ferrocenyl moieties and the ratio of peak currents. These polymers exhibit predictable and tailorable electrochemical properties, high DNA duplex stability, and unusually sharp melting transitions, which are highly desirable characteristics for DNA detection applications. Significantly, single-base mismatches could be easily detected using two distinct block copolymers as dual-channel detection probes in an electrochemical DNA detection format.  相似文献   

4.
[structure: see text] A fluorinated OPA monomer containing the base thymine ((Z)-t-F-OPA) was synthesized in 12 steps, featuring a highly selective allylic over homoallylic Mitsunobu substitution for the introduction of the nucleobase. F-OPA modified PNA decamers were prepared by the MMTr/acyl protection strategy. The thermal stability of duplexes of PNA decamers containing (Z)-t-F-OPA units with antiparallel complementary DNA was measured. We found a strong dependence of stability from the sequential position of the (Z)-t-F-OPA units, ranging from DeltaT(m) of +2.4 to -8.1 degrees C/modification relative to unmodified PNA.  相似文献   

5.
The ferrocenyl‐nucleoside, 5‐ethynylferrocenyl‐2′‐deoxycytidine ( 1 ) has been prepared by Pd‐catalyzed cross‐coupling between ethynylferrocene and 5‐iodo‐2′‐deoxycytidine and incorporated into oligonucleotides by using automated solid‐phase synthesis at both silica supports (CPG) and modified single‐crystal silicon electrodes. Analysis of DNA oligonucleotides prepared and cleaved from conventional solid supports confirms that the ferrocenyl‐nucleoside remains intact during synthesis and deprotection and that the resulting strands may be oxidised and reduced in a chemically reversible manner. Melting curve data show that the ferrocenyl‐modified oligonucleotides form duplex structures with native complementary strands. The redox potential of fully solvated ferrocenyl 12‐mers, 350 mV versus SCE, was shifted by +40 mV to a more positive potential upon treatment with the complement contrary to the anticipated negative shift based on a simple electrostatic basis. Automated solid‐phase methods were also used to synthesise 12‐mer ferrocenyl‐containing oligonucleotides directly at chemically modified silicon <111> electrodes. Hybridisation to the surface‐bound ferrocenyl‐DNA caused a shift in the reduction potential of +34 mV to more positive values, indicating that, even when a ferrocenyl nucleoside is contained in a film, the increased density of anions from the phosphate backbone of the complement is still dominated by other factors, for example, the hydrophobic environment of the ferrocene moiety in the duplex or changes in the ferrocene–phosphate distances. The reduction potential is shifted >100 mV after hybridisation when the aqueous electrolyte is replaced by THF/LiClO4, a solvent of much lower dielectric constant; this is consistent with an explanation based on conformation‐induced changes in ferrocene–phosphate distances.  相似文献   

6.
Increased thermal or mechanical stability of DNA duplexes is desired for many applications in nanotechnology or ‐medicine where DNA is used as a programmable building block. Modifications of pyrimidine bases are known to enhance thermal stability and have the advantage of standard base‐pairing and easy integration during chemical DNA synthesis. Through single‐molecule force spectroscopy experiments with atomic force microscopy and the molecular force assay we investigated the effect of pyrimidines harboring C‐5 propynyl modifications on the mechanical stability of double‐stranded DNA. Utilizing these complementary techniques, we show that propynyl bases significantly increase the mechanical stability if the DNA is annealed at high temperature. In contrast, modified DNA complexes formed at room temperature and short incubation times display the same stability as non‐modified DNA duplexes.  相似文献   

7.
High-resolution NMR spectroscopy has been used to establish the conformational consequences of the introduction of a single 3[prime or minute]-S-phosphorothiolate link in the DNA strand of a DNA : RNA hybrid. These systems are of interest as potential antisense therapeutic agents. Previous studies on similarly modified dinucleotides have shown that the conformation of the sugar to which the sulfur is attached shifts to the north (C(3[prime or minute])-endo/C(2[prime or minute])-exo). Comparisons made between NOESY cross-peak intensities, and coupling constants from PE-COSY spectra, for both non-modified and modified duplexes confirm that this conformational shift is also present in the double helical oligonucleotide system. In addition it is noted that in both the dinucleotides and the modified duplex, the conformation of the sugar ring 3[prime or minute] to the site of modification is also shifted to the north. That this pattern is observed in the small monomeric system as well as the larger double helix is suggestive of some pre-ordering of the sequences. The conclusion is supported by consideration of the (1)H chemical shifts of the heterocyclic bases near the site of the modification. The enhanced stability that these conformational changes should bring was confirmed by UV thermal melting studies. Subsequently a series of singly and doubly 3[prime or minute]-S-phosphorothiolate-modified duplexes were investigated by UV. The results are indicative of an additive effect of the modification with thermodynamic benefit being derived from alternate spacing of two modified linkers.  相似文献   

8.
Novel phosphorothioate-modified oligodeoxynucleotides (S-ODNs) containing a deoxyuridine derivative bearing a spermine moiety at the C-5 position were synthesized. The study of the thermal stability and the thermodynamic stability showed that the modified S-ODNs have been able to form the stable duplexes with the complementary DNA. It was also found that the duplex composed of the modified S-ODN and its complementary RNA strand is the substrate for Escherichia coli RNase H, and the cleavage of the RNA strand by the enzyme was almost similar as in the case of the unmodified one.  相似文献   

9.
We present the synthesis of the isobicyclo‐DNA building blocks with the nucleobases A, C, G and T, as well as biophysical and biological properties of oligonucleotides derived thereof. The synthesis of the sugar part was achieved in 5 steps starting from a known intermediate of the tricyclo‐DNA synthesis. Dodecamers containing single isobicyclo‐thymidine incorporations, fully modified A‐ and T‐containing sequences, and fully modified oligonucleotides containing all four bases were synthesized and characterized. Isobicyclo‐DNA forms stable duplexes with natural nucleic acids with a pronounced preference for DNA over RNA as complements. The most stable duplexes, however, arise by self‐pairing. Isobicyclo‐DNA forms preferentially B‐DNA‐like duplexes with DNA and A‐like duplexes with complementary RNA as determined by circular dichroism (CD) spectroscopy. Self‐paired duplexes show a yet unknown structure, as judged from CD spectroscopy. Biochemical tests revealed that isobicyclo‐DNA is stable in fetal bovine serum and does not elicit RNaseH activity.  相似文献   

10.
We report here the synthesis and binding studies of oligo-2'-deoxyribonucleotides (ODNs) containing 2'-deoxyuridines, modified at the 5-position by linkers ending with either one or two guanidinium groups. Comparison was made with ODNs containing 2'-deoxyuridines modified at the 5-position with linkers ending with either two or one amino groups. One or two modified 2'-deoxyuridines were incorporated into pyrimidine strands, and their influence on the stability of duplex (with both DNA and RNA targets) and triplex structures was studied. The strongest stabilization was obtained with modified ODNs containing guanidinium groups. This result confirms that the reduction of the global negative charge number on one strand is an important parameter in the stability of duplex and triplex structures.  相似文献   

11.
We have designed and synthesized DNA duplexes containing 5-dimethylaminocytosine ((DMA)C) to investigate the effects of C(5)-substituted cytosine bases on the transfer and trapping of positive charge (holes) in DNA duplexes. Fluorescence quenching experiments revealed that a (DMA)C base is more readily one-electron oxidized into a radical cation intermediate as compared with other natural nucleobases. Upon photoirradiation of the duplexes containing (DMA)C, the photosensitizer-injected hole migrated through the DNA bases and was trapped efficiently at the (DMA)C sites, where an enhanced oxidative strand cleavage occurred by hot piperidine treatment. The (DMA)C radical cation formed by hole transfer may undergo specific hydration and subsequent addition of molecular oxygen, thereby leading to its decomposition followed by a predominant strand cleavage at the (DMA)C site. This remarkable property suggests that the modified cytosine (DMA)C can function as an efficient hole-trapping site in the positive-charge transfer in DNA duplexes.  相似文献   

12.
The recognition properties of DNA duplexes containing single or triple incorporations of eight different donor-modified (OMe, NH(2)) and acceptor-modified (NO(2)) biphenyl residues as base replacements in opposite positions were probed by UV-melting and by CD and fluorescence spectroscopy. We found a remarkable dependence of duplex stability on the natures of the substituents (donor vs. acceptor). The stabilities of duplexes with one biphenyl pair increase in the order donor/donor < acceptor/donor < acceptor/acceptor substitution. The most stable biphenyl pairs stabilize duplexes by up to 6 degrees C in T(m). In duplexes with three consecutive biphenyl pairs the stability increases in the inverse order (acceptor/acceptor < donor/acceptor < donor/donor) with increases in T(m), relative to an unmodified duplex, of up to 10 degrees C. A thermodynamic analysis, combined with theoretical calculations of the physical properties of the biphenyl substituents, suggests that in duplexes with single biphenyl pairs the affinity is dominated by electrostatic forces between the biphenyl/nearest neighbor natural base pairs, whereas in the triple-modified duplexes the increase in thermal stability is predominantly determined by hydrophobic interactions of the biphenyl residues with each other. Oligonucleotides containing amino biphenyl residues are fluorescent. Their fluorescence is largely quenched when they are paired with themselves or with nitrobiphenyl-containing duplex partners.  相似文献   

13.
To synthesize oligonucleotides containing 2'-O-phosphate groups, four kinds of ribonucleoside 3'-phosphoramidite building blocks 6a-d having the bis(2-cyano-1,1-dimethylethoxy)thiophosphoryl (BCMETP) group were prepared according to our previous phosphorylation procedure. These phosphoramidite units 6a-d were not contaminated with 3'-regioisomers and were successfully applied to solid-phase synthesis to give oligodeoxyuridylates 15, 16 and oligouridylates 21, 22. Self-complementary Drew-Dickerson DNA 12mers 24-28 replaced by a 2'-O-phosphorylated ribonucleotide at various positions were similarly synthesized. In these syntheses, it turned out that KI(3) was the most effective reagent for oxidative desulfurization of the initially generated thiophosphate group to the phosphate group on polymer supports. Without using this conversion step, a tridecadeoxyuridylate 17 incorporating a 2'-O-thiophosphorylated uridine derivative was also synthesized. To investigate the effect of the 2'-phosphate group on the thermal stability and 3D-structure of DNA(RNA) duplexes, T(m) measurement of the self-complementary oligonucleotides obtained and MD simulation of heptamer duplexes 33-36 were carried out. According to these analyses, it was suggested that the nucleoside ribose moiety phosphorylated at the 2'-hydroxyl function predominantly preferred C2'-endo to C3'-endo conformation in DNA duplexes so that it did not significantly affect the stability of the DNA duplex. On the other hand, the 2'-modified ribose moiety was expelled to give a C3'-endo conformation in RNA duplexes so that the RNA duplexes were extremely destabilized.  相似文献   

14.
Three 2′‐phenanthrenyl‐C‐deoxyribonucleosides with donor (phenNH2), acceptor (phenNO2), or no (phenH) substitution on the phenanthrenyl core were synthesized and incorporated into oligodeoxyribonucleotides. Duplexes containing either one or three consecutive phenR residues, which were located opposite each other, were formed. Within these residues, the phenR residues are expected to recognize each other through interstrand stacking interactions, in much the same way as described previously for biphenyl DNA. The thermal, thermodynamic, and fluorescence properties of such duplexes were determined by UV melting analysis and fluorescence spectroscopy. Depending on the nature of the substituent, the thermal stability of single‐modified duplexes can vary between ?2.7 to +11.3 °C in Tm and that of triple‐modified duplexes from +7.8 to +11.1 °C. Van′t Hoff analysis suggested that the observed higher thermodynamic stability in phenH‐ and phenNO2‐containing duplexes is of enthalpic origin. A single phenH or phenNO2 residue in a bulge position also stabilizes a corresponding duplex. If a phenNO2 residue is placed in a bulge position next to a base mismatch this can lead, in a sequence‐dependent manner, to duplex destabilization. The phenNO2 residue was found to be a highly efficient (10–100‐fold) quencher of phenH and phenNH2 fluorescence if placed in the opposite position to the fluorophores. When phenH and phenNH2 residues were placed opposite each other, efficient quenching of phenH and enhancement of phenNH2 fluorescence was found, which is an indicator for electron‐ or energy‐transfer processes between the aromatic units.  相似文献   

15.
Single-step aqueous cross-coupling reactions of nucleobase-halogenated 2'-deoxynucleosides (8-bromo-2'-deoxyadenosine, 7-iodo-7-deaza-2'-deoxyadenosine, or 5-iodo-2'-deoxy-uridine) or their 5'-triphosphates with 4-boronophenylalanine or 4-ethynylphenylalanine have been developed and used for efficient synthesis of modified 2'-deoxynucleoside triphosphates (dNTPs) bearing amino acid groups. These dNTPs were then tested as substrates for DNA polymerases for construction of functionalized DNA through primer extension and PCR. While 8-substituted adenosine triphosphates were poor substrates for DNA polymerases, the corresponding 7-substituted 7-deazaadenine and 5-substituted uracil nucleotides were efficiently incorporated in place of dATP or dTTP, respectively, by Pwo (Pyrococcus woesei) DNA polymerase. Nucleotides bearing the amino acid connected through the less bulky acetylene linker were incorporated more efficiently than those directly linked through a more bulky phenylene group. In addition, combinations of modified dATPs and dTTPs were incorporated by Pwo polymerase. Novel functionalized DNA duplexes bearing amino acid moieties were prepared by this two-step approach. PCR can be used for amplification of duplexes bearing large number of modifications, while primer extension is suitable for introduction of just one or several modifications in a single DNA strand.  相似文献   

16.
Nucleoside configuration (α-d vs. β-d ), nucleobase substituents, and the helical DNA environment of silver-mediated 5-aza-7-deazaguanine-cytosine base pairs have a strong impact on DNA stability. This has been demonstrated by investigations on oligonucleotide duplexes with silver-mediated base pairs of α-d and β-d anomeric 5-aza-7-deaza-2′-deoxyguanosines and anomeric 2′-deoxycytidines incorporated in 12-mer duplexes. To this end, a new synthetic protocol has been developed to access the pure anomers of 5-aza-7-deaza-2′-deoxyguanosine by glycosylation of either the protected nucleobase or its salt followed by separation of the glycosylation products by crystallization and chromatography. Thermal stability measurements were performed on duplexes with α-d /α-d and β-d /β-d homo base pairs or α-d /β-d and β-d /α-d hybrid pairs within two sequence environments, positions 6 or 7, of oligonucleotide duplexes. The respective Tm stability increases observed after silver ion addition differ significantly. Homo base pairs with β-d /β-d or α-d /α-d nucleoside combinations are more stable than α-d /β-d hybrid base pairs. The positional switch of silver-ion-mediated base pairs has a significant impact on stability. Nucleobase substituents introduced at the 5-position of the dC site of silver-mediated base pairs affect base pair stability to a minor extent. Our investigation might lead to applications in the construction of bioinspired nanodevices, in DNA diagnostics, or metal-DNA hybrid materials.  相似文献   

17.
Oligonucleotides containing an alkylene intrastrand cross‐link (IaCL) between the O6‐atoms of two consecutive 2′‐deoxyguanosines (dG) were prepared by solid‐phase synthesis. UV thermal denaturation studies of duplexes containing butylene and heptylene IaCL revealed a 20 °C reduction in stability compared to the unmodified duplexes. Circular dichroism profiles of these IaCL DNA duplexes exhibited signatures consistent with B‐form DNA. Human O6‐alkylguanine DNA alkyltransferase (hAGT) was capable of repairing both IaCL containing duplexes with slightly greater efficiency towards the heptylene analog. Interestingly, repair efficiencies of hAGT towards these IaCL were lower compared to O6‐alkylene linked IaCL lacking the 5′‐3′‐phosphodiester linkage between the connected 2′‐deoxyguanosine residues. These results demonstrate that the proficiency of hAGT activity towards IaCL at the O6‐atom of dG is influenced by the backbone phosphodiester linkage between the cross‐linked residues.  相似文献   

18.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N‐aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)2, and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 Å, respectively. The non‐modified PNA duplex adopts a P‐type helical structure similar to that of previously characterized PNAs. The atomic‐level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P‐type helical structure, its flexibility is relatively high. For example, the base‐pair rise in the bipyridine‐containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a π‐stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl‐modified DNA duplexes in solution, where the biphenyls are π stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.  相似文献   

19.
A systematic investigation of the efficiency of oxidative damage at guanine residues through long-range charge transport was carried out as a function of intervening base mismatches. A series of DNA oligonucleotides were synthesized that incorporate a ruthenium intercalator linked covalently to the 5' terminus of one strand and containing two 5'-GG-3' sites in the complementary strand. Single base mismatches were introduced between the two guanine doublet steps, and the efficiency of transport through the mismatches was determined through measurements of the ratio of oxidative damage at the guanine doublets distal versus proximal to the intercalated ruthenium oxidant. Differing relative extents of guanine oxidation were observed for the different mismatches. The damage ratio of oxidation at the distal versus proximal site for the duplexes containing different mismatches varies in the order GC approximately GG approximately GT approximately GA > AA > CC approximately TT approximately CA approximately CT. For all assemblies, damage found with the Delta-Ru diastereomer was found to be greater than with the Lambda-diastereomer. The extent of distal/proximal guanine oxidation in different mismatch-containing duplexes was compared with the helical stability of the duplexes, electrochemical data for intercalator reduction on different mismatch-containing DNA films, and base-pair lifetimes for oligomers containing the different mismatches derived from 1H NMR measurements of the imino proton exchange rates. While a clear correlation is evident both with helix stability and electrochemical data monitoring reduction of an intercalator through DNA films, damage ratios correlate most closely with base-pair lifetimes. Competitive hole trapping at the mismatch site does not appear to be a key factor governing the efficiency of transport through the mismatch. These results underscore the importance of base dynamics in modulating long-range charge transport through the DNA base-pair stack.  相似文献   

20.
Cross-linked DNA was constructed by a "stepwise click" reaction using a bis-azide. The reaction is performed in the absence of a template, and a monofunctionalized oligonucleotide bearing an azido-function is formed as intermediate. For this, an excess of the bis-azide has to be used compared to the alkynylated oligonucleotide. The cross-linking can be carried out with any alkynylated DNA having a terminal triple bond at any position of the oligonucleotide, independent of chain length or sequence with identical or nonidentical chains. Short and long linkers with terminal triple bonds were introduced in the 7-position of 8-aza-7-deaza-2'-deoxyguanosine (1 or 2), and the outcome of the "stepwise" click and the "bis-click" reaction was compared. The cross-linked DNAs form cross-linked duplexes when hybridized with single-stranded complementary oligonucleotides. The stability of these cross-linked duplexes is as high as respective individual duplexes when they were ligated at terminal positions with linkers of sufficient length. The stability decreases when the linkers are incorporated at central positions. The highest duplex stability was reached when two complementary cross-linked oligonucleotides were hybridized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号