首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
In the reaction of the N-substituted diethanolamines (H(2)L(1-3)) (1-3) with calcium hydride followed by addition of iron(III) or indium(III) chloride, the iron wheels [Fe(6)Cl(6)(L(1))(6)] (4) and [Fe(6)Cl(6)(L(2))(6)] (6) or indium wheels [In(6)Cl(6)(L(1))(6)] (5), [In(6)Cl(6)(L(2))(6)] (8) and [In(6)Cl(6)(L(3))(6)] (9) were formed in excellent yields. Exchange of the chloride ions of 6 by thiocyanate ions afforded [Fe(6)(SCN)(6)(L(2))(6)] (7). Whereas the structures of 4, 5 and 7 were determined unequivocally by single-crystal X-ray analyses, complexes 8 and 9 were characterised by NMR spectroscopy. Contrary to what is normally presumed, the scaffolds of six-membered metallic wheels are not generally rigid, but rather undergo nondissociative topomerisation processes. This was shown by variable temperature (VT) (1)H NMR spectroscopy for the indium wheel [In(6)Cl(6)(L(1))(6)] (5) and is highlighted for the enantiotopomerisation of one indium centre [ 1/6[S(6)-5]<==>[1/6[S(6)-5']]. The self-assembly of metallic wheels, starting from diethanolamine dendrons, is an efficient strategy for the convergent synthesis of metallodendrimers.  相似文献   

2.
Inverted cucurbit[n]urils (iCB[n]) form as intermediates during the synthesis of cucurbit[n]urils from glycoluril and formaldehyde in HCl (85 degrees C). Product resubmission experiments establish that the diastereomeric iCB[6] and iCB[7] are kinetic products that are less stable thermodynamically than CB[6] or CB[7] (>2.8 kcal mol(-1)). When iCB[6] or iCB[7] is heated under aqueous acidic conditions, a preference for ring contraction is noted in the formation of CB[5] and CB[6], respectively. Interestingly, under anhydrous acidic conditions ring size is preserved with iCB[6] delivering CB[6] cleanly. To establish the intramolecular nature of the iCB[6] to CB[6] conversion under anhydrous, but not aqueous, acidic conditions we performed crossover experiments involving mixtures of iCB[6] and its (13)C=O labeled isotopomer (13)C(12)-iCB[6]. An unusual diastereomeric CB[6] with a M?bius geometry (13) is proposed as a mechanistic intermediate in the conversion of iCB[6] to CB[6] under anhydrous acidic conditions. The improved mechanistic understanding provided by this study suggests improved routes to CB[n]-type compounds.  相似文献   

3.
In this work, the cation and anion products of the reactions between platinum clusters produced by laser ablation and the benzene molecules seeded in argon have been studied using a high-resolution reflectron time-of-flight mass spectrometer (RTOFMS). The dominant cation products are [C(6n)H(6n - k)](+) and [Pt(m)(C(6)H(6))(n)](+) complexes, while the dominant anion products are dehydrogenated species, [C(6)H(5)PtH](-), [PtC(12)H(k)](-) and [Pt(m)C(6)H(4) . . . (C(6)H(6))(n)](-), etc. Some important intermediate structures ([PtC(6)H(6)](+), [Pt(C(6)H(6))(2)](+), [Pt(2)(C(6)H(6))(3)](+), [C(6)H(5)PtH](-), [Pt(2)C(6)H(4)](-), [Pt(3)C(6)H(4)](-) and [Pt(4)C(6)H(4)](-)) have been analyzed using density functional theory (DFT) calculations. Different reaction mechanisms are proposed for platinum cluster cations and anions with benzene, respectively.  相似文献   

4.
A series of luminescent branched platinum(II) alkynyl complexes, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]C-C6H4C[triple bond]C}3C6H3] (R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, C6H4SAc, 1-napthyl (Np), 1-pyrenyl (Pyr), 1-anthryl-8-ethynyl (HC[triple bond]CAn)), [1,3-{PyrC[triple chemical bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], and [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], was successfully synthesized by using the precursors [1,3,5-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] or [1,3-{Cl(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3]. The X-ray crystal structures of [1,3,5-{MeOC6H4C[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An] have been determined. These complexes were found to show long-lived emission in both solution and solid-state phases at room temperature. The emission origin of the branched complexes [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=C6H5, C6H4OMe, C6H4Me, C6H4CF3, C5H4N, and C6H4SAc was tentatively assigned to be derived from triplet states of predominantly intraligand (IL) character with some mixing of metal-to-ligand charge-transfer (MLCT) (dpi(Pt)-->pi*(C[triple bond]CR)) character, while the emission origin of the branched complexes with polyaromatic alkynyl ligands, [1,3,5-{RC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}3C6H3] with R=Np, Pyr, or HC[triple bond]CAn, [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-{(iPr)3SiC[triple bond]C}C6H3], [1,3-{PyrC[triple bond]C(PEt3)2PtC[triple bond]CC6H4C[triple bond]C}2-5-(HC[triple bond]C)C6H3], and [1,8-{Cl(PEt3)2PtC[triple bond]C}2An], was tentatively assigned to be derived from the predominantly 3IL states of the respective polyaromatic alkynyl ligands, mixed with some 3MLCT (d(pi)(Pt)-->pi*(C[triple bond]CR)) character. By incorporating different alkynyl ligands into the periphery of these branched complexes, one could readily tune the nature of the lowest energy emissive state and the direction of the excitation energy transfer.  相似文献   

5.
Excision of the     
The synthesis of new molybdenum cluster selenocyanide anionic complexes [Mo6Se8(CN)6]7- and [Mo6Se8(CN)6]6- is reported. The [Mo6Se8(CN)6]7- ion was obtained by excision of the cluster core [Mo6Se8] from a Chevrel phase in the reaction of Mo6Se8 with KCN at 650 degrees C; the [Mo6Se8(CN)6]6- ion is formed by oxidation of [Mo6Se8(CN)6]7-. New cluster salts K7[Mo6Se8(CN)6] x 8H2O (1) and (Me4N)4K2[Mo6Se8(CN)6] x 10H2O (2) were isolated and their crystal structures were solved. Compound 1 crystallizes in the cubic space group Fm3m (a=15.552(2) A, Z=4, V=3761.5(8) A3), compound 2 crystallizes in the triclinic space group P1 (a=11.706(2), b=11.749(2), c=12.459(2) A, alpha=72.25(1), beta=77.51(1), gamma=63.04(1), Z=1, V=1448.5(4) A3). Compound 1 is paramagnetic due to an availability of 21 electrons per Mo6 cluster; cyclic voltammetry reveals a quasi-reversible transition [Mo6Se8(CN)6]7- <--> [Mo6Se8(CN)6]6-, E1/2=0.63 V.  相似文献   

6.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

7.
Binding behaviors of cucurbit[6]uril (CB[6]) and cucurbit[7]uril (CB[7]) with a series of bis-pyridinium compounds N, N’-hexamethylenebis(1-alkyl-4-carbamoyl pyridinium bromide) (HBPB-n) (alkyl chain length, n = 6, 8 and 10) guests were investigated using 1H-NMR, ESI–MS and single crystal X-ray diffraction methods. The results show that CB[6] and CB[7] can form [2]pseudorotaxanes with HBPB-n easily. When increasing the length of tail alkyl chain, the binding site of CB[6] at guest molecules changed from the tail to the middle part, while CB[7] remained located over the tail chain. As CB[6] and CB[7] were added in HBPB-8 aqueous solution, a [3]pseudorotaxane was formed by the inclusion of the internal middle site in CB[6] and the tail chain in CB[7].  相似文献   

8.
A simple template-mediated route, starting from triethalolamine 1, sodium hydride or caesium carbonate, and iron(III) chloride led to the six- and eight-membered iron coronates [Na c [Fe6[N(CH2CH2O)3]6]]+ (2) and [Cs c (Fe8[N(CH2CH2O)3]8]]+ (3). In the reaction of N-methyldiethanolamine 4 (H2L1) or N-(2,5-dimethylbenzyl)iminodiethanol 6 (H2L2) with calcium hydride followed by addition of a solution of iron(III) chloride, the neutral unoccupied coronands [Fe6Cl6(L1)6] (5) and [Fe6Cl6(L2)6] (7) were formed. Subsequent exchange of the chloride ions of 7 by bromide or thiocyanate ions afforded the ferric wheels [Fe6Br6(L2)6] (8) or [Fe6(NCS)6(L2)6] (9), respectively. Titration experiments of solutions of dianion (L1)2- with iron(III) chloride in THF revealed interesting mechanistic details about the self-assembling process leading to 5. At an iron/ligand ratio of 1:1.5 star-shaped tetranuclear [Fe[Fe(L1)2]3] (11) was isolated. However, at an iron/ligand ratio of 1:2, complex 11 was transformed into the ferric wheel 5. It was shown, that the interconversion of 5 and 11 is reversible. Based on the mechanistic studies, a procedure was developed which works for both the synthesis of homonuclear 11 and the star-shaped heteronuclear clusters [Cr[Fe(L1)2]3] (12) and [Al[Fe(L1)2]3] (13). The structures of all new compounds were determined unequivocally by single-crystal X-ray analyses.  相似文献   

9.
18-Crown[6] ether has been used to prepare a new class of organic-inorganic complexes of general formula 18-crown[6]M[HSO(4)](n) (where M = NH(4) (+), K(+), Sr(2+) and n = 1, 2) by reacting directly in solution or in the solid state the crown ether 18-crown[6] with inorganic salts such as [NH(4)][HSO(4)], K[HSO(4)], and Sr[HSO(4)](2). The structures of 18-crown[6][NH(4)][HSO(4)]2 H(2)O (12 H(2)O), 18-crown[6][NH(4)][HSO(4)] (1), 18-crown[6]K[HSO(4)]2 H(2)O (22 H(2)O), 18-crown[6]K[HSO(4)] (2), and 18-crown[6]Sr[HSO(4)](2) (3) have been characterized by single-crystal X-ray diffraction. The reversible water loss in compounds 12 H(2)O and 22 H(2)O leads to formation of the corresponding anhydrous phases 18-crown[6][NH(4)][HSO(4)] (1), and 18-crown[6]K[HSO(4)] (2), which undergo, on further heating, enantiotropic solid-solid transitions very likely associated with the on-set of a solid state dynamical process. Similar high-temperature behavior is shown by 18-crown[6]Sr[HSO(4)](2) (3). The dehydration and phase-transition processes have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and variable temperature X-ray powder diffraction.  相似文献   

10.
Pseudorotaxane monomer (VBCB) containing cucurbitutil[6] (CB[6]) and N^1-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride (VBDADC) is obtained by self-assembly of cucurbituril[6] with VBDADC in water and then polymerized using potassium persulfate (KPS) as initiator to give novel water-soluble side-chain cucurbituril[6]-based pseudopolyrotaxane(PVBCB). The chemical structures of PVBCB, VBCB and VBDADC are confirmed by ^1H NMR,^13C NMR spectra and elemental analysis. In VBCB, CB[6] is localized aliphatic group of the side chain and the molar ratio of CB[6] to VBDAC is 1:1 .  相似文献   

11.
The coordination compounds [Mg(XeF(2))(2)][AsF(6)](2), [Mg(XeF(2))(4)][AsF(6)](2), [Ca(XeF(2))(2.5)][AsF(6)](2), [Ba(XeF(2))(3)][AsF(6)](2), and [Ba(XeF(2))(5)][AsF(60](2) were characterized by solid-state (19)F and (129)Xe magic-angle spinning NMR spectroscopy. The (19)F and (129)Xe NMR data of [Mg(XeF(2))(2)][AsF(6)](2), [Mg(XeF(2)(4)][AsF(6)](2), and [Ca(XeF(2))(2.5)][AsF(6)](2) were correlated with the previously determined crystal structures. The isotropic (19)F chemical shifts and (1)J((129)Xe-(19)F) coupling constants were used to distinguish the terminal and bridging coordination modes of XeF(2). Chemical-shift and coupling-constant calculations for [Mg(XeF(2))(4)][AsF(6)](2) confirmed the assignment of terminal and bridging chemical-shift and coupling-constant ranges. The NMR spectroscopic data of [Ba(XeF(2))(3)][AsF(6)](2) and [Ba(XeF(2))(5)][AsF(6)](2) indicate the absence of any terminal XeF(2) ligands, which was verified for [Ba(XeF(2))(5)][AsF(6)](2) by its X-ray crystal structure. The adduct [Ba(XeF(2))(5)][AsF(6)](2) crystallizes in the space group Fmmm, with a = 11.6604(14) Angstrom, b = 13.658(2) Angstrom, c = 13.7802(17) Angstrom, V = 2194.5(5) Angstrom(3) at -73 degrees C, Z = 4, and R = 0.0350 and contains two crystallographically independent bridging XeF(2) molecules and one nonligating XeF(2) molecule. The AsF(6-) anions in [Mg(XeF(2))(4)][AsF(6)](2), [Ca(XeF(2))(2.5)][AsF(6)](2), [Ba(XeF(2))(3)][AsF(6)](2), and [Ba(XeF(2))(5)][AsF(6)](2) were shown to be fluxional with the fluorines-on-arsenic being equivalent on the NMR time scale, emulating perfectly octahedral anion symmetry.  相似文献   

12.
Reactions of C(6)H(5)Li and 4-CH(3)C(6)H(4)Li with halides of Ti, Ir, Hf, and Nb lead to the formation of homoleptic organometallic anions of these metals. Owing to their thermal instability and their sensitivity towards H(2) O and O(2) , these compounds are characterized by single-crystal structure determinations at low temperature, whereas other physical data could only be obtained occasionally. Three pentacoordinate complex anions [Ti(C(6)H(5))(5)](-), [Ti(4-CH(3)C(6)H(4))(5)](-), and [Zr(C(6)H(5))(5)](-) have square-pyramidal structures that display only slight deviations from the ideal geometry, in contrast to the already known structures of [Ti(CH(5))(5)](-). The hexacoordinate complex anions [Zr(C(6)H(5))(6)](2-), [Zr(4-CH(3)C(6)H(4))(6)](2-), [Nb(C(6)H(5))(6)](2-), and [Nb(4-CH(3)C(6)H(4))(6)](2-) all have trigonal-prismatic structures, in accord with the known hexamethyl complex dianions. In contrast, the hexacoordinate complex anion [Hf(C(6)H(5))(6)](2)(-) has an octahedral or close to octahedral structure, in contrast to the known trigonal-prismatic structures of [Ta(C(6)H(5))(6)](-) and [Ta(4-CH(3)C(6)H(4))(6) (-). A qualitative explanation for this structural variability is given.  相似文献   

13.
Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh]]. Similarly, the reaction of [Pd(bipy)(C(6)F(5))(OH)] with PhNCO in methanol gives the N-phenyl-O-methylcarbamate complex [Pd(bipy)(C(6)F(5))[NPhC(O)OR]]. The reactions of [(N[bond]N)Pd(C(6)F(5))(OH)] with PhNCS in the presence of Et(2)NH yield the corresponding thioureidometal complexes [Pd(N[bond]N)(C(6)F(5))[NPhCSNR(2)]]. The crystal structures of [Pd(tmeda)(C(6)F(5))(CO(2)Me)], [Pd(2)(Me(2)bipy)(2)(C(6)F(5))(2)(mu-eta(2)-CO(3))].2CH(2)Cl(2), and [Pd(tmeda)(C(6)F(5))[SC(OMe)NPh]] have been determined.  相似文献   

14.
The synthesis of the complex [RhCl3tpm*], (1), (tpm*= tris(3,5-dimethylpyrazolyl)methane) is reported. This complex is a suitable starting material for the synthesis of heteroleptic half-sandwich complexes: it has been used to synthesise the complexes; [RhCl(bpy)tpm*][(PF6)2][2][(PF6)2](bpy = 2,2'-bipyridyl), [RhCl(phen)tpm*][(PF6)2][3][(PF6)2]. (phen = 1,10-phenanthroline), [RhCl2(py)tpm*][(PF6)], [4][(PF6)2], (py = pyridine), and[RhCl(py)2tpm*][(PF6)2], [5][(PF6)2]. The structures of [2][(PF6)2], [33][(PF6)2], [4][(PF6)2], and [5][(PF6)2] have been determined by X-ray crystallography. The electrochemical and photophysical properties of these new compounds have also been investigated.  相似文献   

15.
The successive addition of KCN and Ph3CCl to B(C6F4-C6F5-2)3 (PBB) affords triphenylmethyl salts of the [NC-PBB]- anion. By contrast, the analogous reaction with sodium dicyanamide followed by treatment with Ph(3)CCl leads to the zwitterionic aminoborane H2NB(C12F9)2C12F8, via nucleophilic attack on an o-F atom, together with CPh3[F-PBB]. Whereas treatment of [NC-PBB]- with either PBB or B(C6F5)3 fails to give isolable cyano-bridged diborates, the reaction of Me3SiNC-B(C6F5)3 with PBB in the presence of Ph3CCl affords [Ph3C][PBB-NC-B(C6F5)3]. Due to steric hindrance this anion is prone to borane dissociation. The longer linking group N(CN)2- gives the very voluminous anions [N[CNB(C6F5)3]2]- and [N(CN-PBB)2]-. A comparison of propylene polymerisations with rac-Me2Si(Ind)2ZrMe2 activated with the various boranes or trityl borates gives an anion-dependent activity sequence, in the order [NC-PBB]- < [MeB(C6F5)3]- < [MePBB]- approximately [PBB-NCB(C6F5)3]- approximately [N[CNB(C6F5)3]2]- < [F-PBB]-< [B(C6F5)4]- < [N(CN-PBB)2]-. The anion [N(CN-PBB)2]- gives a catalyst productivity about 2500 times higher than that of [NC-PBB]- and exceeds that of [B(C6F5)4]- based catalysts. The van der Waals volumes and surface areas of the anions have been calculated and provide a rationale for the observed reactivity trends in polymerisation reactions.  相似文献   

16.
The reaction of Ru2(S2C3H6)(CO)6 (1) with 2 equiv of Et4NCN yielded (Et4N)2[Ru2(S2C3H6)(CN)2(CO)4], (Et4N)2[3], which was shown crystallographically to consist of a face-sharing bioctahedron with the cyanide ligands in the axial positions, trans to the Ru-Ru bond. Competition experiments showed that 1 underwent cyanation >100x more rapidly than the analogous Fe2(S2C3H6)(CO)6. Furthermore, Ru2(S2C3H6)(CO)6 underwent dicyanation faster than [Ru2(S2C3H6)(CN)(CO)5]-, implicating a highly electrophilic intermediate [Ru2(S2C3H6)(mu-CO)(CN)(CO)5]-. Ru2(S2C3H6)(CO)6 (1) is noticeably more basic than the diiron compound, as demonstrated by the generation of [Ru2(S2C3H6)(mu-H)(CO)6]+, [1H]+. In contrast to 1, the complex [1H]+ is unstable in MeCN solution and converts to [Ru2(S2C3H6)(mu-H)(CO)5(MeCN)]+. (Et4N)2[3] was shown to protonate with HOAc (pKa = 22.3, MeCN) and, slowly, with MeOH and H2O. Dicyanide [3]2- is stable toward excess acid, unlike the diiron complex; it slowly forms the coordination polymer [Ru2(S2C3H6)(mu-H)(CN)(CNH)(CO)4]n, which can be deprotonated with Et3N to regenerate [H3]-. Electrochemical experiments demonstrate that [3H]- catalyzes proton reduction at -1.8 V vs Ag/AgCl. In contrast to [3]2-, the CO ligands in [3H]- undergo displacement. For example, PMe3 and [3H]- react to produce [Ru2(S2C3H6)(mu-H)(CN)2(CO)3(PMe3)]-. Oxidation of (Et4N)2[3] with 1 equiv of Cp2Fe+ gave a mixture of [Ru2(S2C3H6)(mu-CO)(CN)3(CO)3]- and [Ru2(S2C3H6)(CN)(CO)5]-, via a proposed [Ru2]2(mu-CN) intermediate. Overall, the ruthenium analogues of the diiron dithiolates exhibit reactivity highly reminiscent of the diiron species, but the products are more robust and the catalytic properties appear to be less promising.  相似文献   

17.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

18.
IntroductionThe 1 ,2 - dicyanoethene- 1 ,2 - dithiolato anion isa bidentate ligand.It can form square- coplanarcomplexes with many transition metal ions and hasfound a lot of application in analytical chemistry,catalyst and biochemistry.In recent years,metalcomplexes containing mnt and its dithiolate analogligands have been extensively studied and have re-ceived considerable attention due to their potentialapplication in charge transfer and storage,molecu-lar metals,magnetic materials,supercon…  相似文献   

19.
The oxidations of cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6), cis-[OsII(bpy)2(Cl)(NH3)](PF6), and [OsII(typ)(bpy)(NH3)](PF6)2 have been studied by cyclic voltammetry and by controlled-potential electrolysis. In acetonitrile or in acidic, aqueous solution, oxidation is metal-based and reversible, but as the pH is increased, oxidation and proton loss from coordinated ammonia occurs. cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6) are oxidized by four electrons to give the corresponding OsVI nitrido complexes, [OSVI(typ)(Cl)2(N)]+. Oxidation of [Os(typ)(bpy)(NH3)](PF6)2 occurs by six electrons to give [Os(tpy)(bpy)(NO)](PF6)3. Oxidation of cis-[OsII(bpy)2(Cl)(NH3)](PF6) at pH 9.0 gives cis-[OsII(bpy)2(Cl)(NO)](PF6)2 and the mixed-valence form of the mu-N2 dimer [cis-[Os(bpy)2(Cl)2[mu-N2)](PF6)3. With NH4+ added to the electrolyte, cis-[OsII(bpy)2(Cl)(N2)](PF6) is a coproduct. The results of pH-dependent cyclic voltammetry measurements suggest OsIV as a common intermediate in the oxidation of coordinated ammonia. For cis- and trans-[OsIII(tpy)(Cl)2(NH3)]+, OsIV is a discernible intermediate. It undergoes further pH-dependent oxidation to [OsVI(tpy)(Cl)2(N)]+. For [OsII(tpy)(bpy)(NH3)]2+, oxidation to OsIV is followed by hydration at the nitrogen atom and further oxidation to nitrosyl. For cis-[OsII(bpy)2(Cl)-(NH3)]+, oxidation to OsIV is followed by N-N coupling and further oxidation to [cis-[Os(bpy)2(Cl)2(mu-N2)]3+. At pH 9, N-N coupling is competitive with capture of OsIV by OH- and further oxidation, yielding cis-[OsII(bpy)2(Cl)(NO)]2+.  相似文献   

20.
Density functional theory has been used to investigate the structures, bonding and properties of a family of hydride rich late transition metal clusters of the type [Rh(6)(PH(3))(6)H(12)](x) (x = 0, +1, +2, +3 or +4), [Rh(6)(PH(3))(6)H(16)](x) (x = +1 or +2) and [Rh(6)(PH(3))(6)H(14)](x) (x = 0, +1 or +2). The positions of the hydrogen atoms around the pseudo-octahedral Rh(6) core in the optimized structures of [Rh(6)(PH(3))(6)H(12)](x) (x = 0, +1, +2, +3 or +4) varied depending on the overall charge on the cluster. The number of semi-bridging hydrides increased (semi-bridging hydrides have two different Rh-H bond distances) as the charge on the cluster increased and simultaneously the number of perfectly bridging hydrides (equidistant between two Rh centers) decreased. This distortion maximized the bonding between the hydrides and the metal centers and resulted in the stabilization of orbitals related to the 2T(2g) set in a perfectly octahedral cluster. In contrast, the optimized structures of the 16-hydride clusters [Rh(6)(PH(3))(6)H(12)](x) (x = +1 or +2) were similar and both clusters contained an interstitial hydride, along with one terminal hydride, ten bridging hydrides and two coordinated H(2) molecules which were bound to two rhodium centers in an eta(2):eta(1)-fashion. All the hydrides were on the outside of the Rh(6) core in the lowest energy structures of the 14-hydride clusters [Rh(6)(PH(3))(6)H(14)] and [Rh(6)(PH(3))(6)H(14)](+), which both contained eleven bridging hydrides, one terminal hydride and one coordinated H(2) molecule. Unfortunately, the precise structure of [Rh(6)(PH(3))(6)H(14)](2+) could not be determined as structures both with and without an interstitial hydride were of similar energy. The reaction energetics for the uptake and release of two molecule of H(2) by a cycle consisting of [Rh(6)(PH(3))(6)H(12)](2+), [Rh(6)(PH(3))(6)H(16)](2+), [Rh(6)(PH(3))(6)H(14)](+), [Rh(6)(PH(3))(6)H(12)](+) and [Rh(6)(PH(3))(6)H(14)](2+) were modelled, and, in general, good agreement was observed between experimental and theoretical results. The electronic reasons for selected steps in the cycle were investigated. The 12-hydride cluster [Rh(6)(PH(3))(6)H(12)](2+) readily picks up two molecules of H(2) to form [Rh(6)(PH(3))(6)H(16)](2+) because it has a small HOMO-LUMO gap (0.50 eV) and a degenerate pair of LUMO orbitals available for the uptake of four electrons (which are provided by two molecules of H(2)). The reverse process, the spontaneous release of a molecule of H(2) from [Rh(6)(PH(3))(6)H(16)](+) to form [Rh(6)(PH(3))(6)H(14)](+) occurs because the energy gap between the anti-bonding SOMO and the next highest energy occupied orbital in [Rh(6)(PH(3))(6)H(16)](+) is 0.9 eV, whereas in [Rh(6)(PH(3))(6)H(14)](+) the energy gap between the anti-bonding SOMO and the next highest energy occupied orbital is only 0.3 eV. At this stage the factors driving the conversion of [Rh(6)(PH(3))(6)H(14)](+) to [Rh(6)(PH(3))(6)H(12)](2+) are still unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号