首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by hypoproliferative anemia, associated physical malformations and a predisposition to cancer. DBA has been associated with mutations and deletions in the large and small ribosomal protein genes, and genetic aberrations have been detected in ∼50–60% of patients. In this study, nine Korean DBA patients were screened for mutations in eight known DBA genes (RPS19, RPS24, RPS17, RPS10, RPS26, RPL35A, RPL5 and RPL11) using the direct sequencing method. Mutations in RPS19, RPS26 and RPS17 were detected in four, two and one patient, respectively. Among the mutations detected in RPS19, two mutations were novel (c.26T>A, c.357-2A>G). For the mutation-negative cases, array-CGH analysis was performed to identify copy-number variations, and no deletions involving the known DBA gene regions were identified. The relative mRNA expression of RPS19 estimated using real-time quantitative PCR analysis revealed two- to fourfold reductions in RPS19 mRNA expression in three patients with RPS19 mutations, and p53 protein expression analysis by immunohistochemistry showed variable but significant nuclear staining in the DBA patients. In conclusion, heterozygous mutations in the known DBA genes RPS19, RPS26 and RPS17 were detected in seven out of nine Korean DBA patients. Among these patients, RPS19 was the most frequently mutated gene. In addition, decreased RPS19 mRNA expression and p53 overexpression were observed in the Korean DBA patients, which supports the hypothesis that haploinsufficiency and p53 hyperactivation represent a central pathway underlying the pathogenesis of DBA.  相似文献   

2.
Intensive glucose control increases the all-cause mortality in type 2 diabetes mellitus (T2DM); however, the underlying mechanisms remain unclear. We hypothesized that strict diet control to achieve euglycemia in diabetes damages major organs, increasing the mortality risk. To evaluate effects on major organs when euglycemia is obtained by diet control, we generated a model of end-stage T2DM in 13-week-old Sprague-Dawley rats by subtotal pancreatectomy, followed by ad libitum feeding for 5 weeks. We divided these rats into two groups and for the subsequent 6 weeks provided ad libitum feeding to half (AL, n=12) and a calorie-controlled diet to the other half (R, n=12). To avoid hypoglycemia, the degree of calorie restriction in the R group was isocaloric (g per kg body weight per day) compared with a sham-operated control group (C, n=12). During the 6-week diet control period, AL rats ate three times more than rats in the C or R groups, developing hyperglycemia with renal hyperplasia. R group achieved euglycemia but lost overall body weight significantly compared with the C or AL group (49 or 22%, respectively), heart weight (39 or 23%, respectively) and liver weight (50 or 46%, respectively). Autophagy levels in the heart and liver were the highest in the R group (P<0.01), which also had the lowest pAkt/Akt levels among the groups (P<0.05 in the heart; P<0.01 in the liver). In conclusion, glycemic control achieved by diet control can prevent hyperglycemia-induced renal hyperplasia in diabetes but may be deleterious even at isocaloric rate when insulin is deficient because of significant loss of heart and liver mass via increased autophagy.  相似文献   

3.
The enabled homolog gene (ENAH, hMena) is abundantly expressed in mesangial tissue, and might play an important role in inflammatory processes of IgA nephropathy (IgAN). The present study was conducted to investigate the association between single nucleotide polymorphisms (SNPs) of the ENAH and childhood IgAN. We analyzed 12 SNPs of ENAH in 176 patients with childhood IgAN and 397 healthy controls. In addition, IgAN patients were dichotomized and compared with respect to several clinical and pathological parameters. Genotyping data showed significant differences between IgAN patients and controls in the frequency of rs2039620, rs12034829, and rs3795443. On comparison of patients with proteinuria to those without proteinuria (≤ or > 4 mg/m2/h), rs12043633 was significantly different between the two groups. With regard to maximum proteinuria (≤ or > 4 mg/m2/h), rs3795443, rs4653643, rs6751, rs10799319, rs7555139, rs576861, and rs487591 showed significant allele frequency differences. For patients with and without gross hematuria, rs4653643, rs6751, rs10799319, rs7555139, rs576861, and rs487591 showed significant allele frequency differences. The rs3795443 was found to be associated with progression of pathological findings. Our results suggest that ENAH polymorphisms are associated with increased susceptibility, development of proteinuria and gross hematuria, and pathological progression of childhood IgAN.  相似文献   

4.
To select candidate genes, we attempted to comparative analysis of protein levels between rheumatoid arthritis (RA) patients and healthy controls by two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS). We identified 17 proteins that showed up- or down-regulated spots in RA patients. We found that coactosin-like1 (COTL1) were highly expressed in RA patients compared with healthy controls. We performed a case-control study to determine whether the COTL1 gene polymorphisms were associated with RA and systemic lupus erythematosus (SLE). The genotype frequency of c.-1124G>T and the allelic frequency of c.484G>A in RA patients, and the genotype frequency of c.484G>A in SLE patients were significantly different from healthy controls (P = 0.009, 0.027, and 0.025, respectively). We also investigated the correlation with the levels of rheumatoid factor (RF) and anti-cyclic citrullinated peptide (CCP) antibody in RA patients, and anti-nuclear antibodies (ANA) in SLE patients. The c.484G>A polymorphism in RA patients has significant association with the levels of anti-CCP antibody (P = 0.03). Our findings demonstrated that c.-1124G>T and c.484G>A polymorphisms of the COTL1 gene might be associated with the genetic susceptibility of autoimmune disorders.  相似文献   

5.
Aspirin (also known as acetylsalicylic acid) is a drug intended to treat fever, pain, or inflammation. Treatment of moderate to severe cases of COVID-19 using aspirin along with dexamethasone has gained major attention globally in recent times. Thus, the purpose of this study was to use High-Performance Liquid Chromatography (HPLC) to evaluate the in vitro inhibition of CYP3A2 enzyme activity using aspirin in rat liver microsomes (RLMs). In this study, an efficient and sensitive HPLC method was developed using a reversed phase C18 column (X Bridge 4.6 mm × 150 mm, 3.5 µm) at 243 nm using acetonitrile and water (70:30 v/v). The linearity (r2 > 0.999), precision (<15%), accuracy and recovery (80–120%), limit of detection (5.60 µM and 0.06 µM), limit of quantification (16.98 µM and 0.19 µM), and stability of the newly developed method were validated for dexamethasone and 6β-hydroxydexamethasone, respectively, following International Conference on Harmonization (ICH) guidelines. This method was applied in vitro to measure CYP3A2 activity. The results showed that aspirin competitively inhibits 6β-hydroxylation (CYP3A2 activity) with an inhibition constant (Ki) = 95.46 µM and the concentration of the inhibitor causing 50% inhibition of original enzyme activity (IC50) = 190.92 µM. This indicated that there is a minimal risk of toxicity when dexamethasone and aspirin are co-administrated and a very low risk of toxicity and drug interaction with drugs that are a substrate for CYP3A2 in healthcare settings.  相似文献   

6.
Background: Myrtus communis (M. communis) is a wild aromatic plant used for traditional herbal medicine that can be demonstrated in insecticidal, antioxidant, anti-inflammatory, and antimicrobial activity of its essential oils (MCEO). Aim: The present study aimed to evaluate the prophylactic effects of M. communis essential oil (MCEO) against chronic toxoplasmosis induced by the Tehran strain of Toxoplasma gondii in mice. Methods: Gas chromatography/mass spectrometry (GC/MS) analysis was performed to determine the chemical composition of MCEO. Mice were then orally administrated with MCEO at the doses of 100, 200, and 300 mg/kg/day and also atovaquone 100 mg/kg for 21 days. On the 15th day, the mice were infected with the intraperitoneal inoculation of 20–25 tissue cysts from the Tehran strain of T. gondii. The mean numbers of brain tissue cysts and the mRNA levels of IL-12 and IFN-γ in mice of each tested group were measured. Results: By GC/MS, the major constituents were α-pinene (24.7%), 1,8-cineole (19.6%), and linalool (12.6%), respectively. The results demonstrated that the mean number of T. gondii tissue cysts in experimental groups Ex1 (p < 0.05), Ex2 (p < 0.001) and Ex3 (p < 0.001) was meaningfully reduced in a dose-dependent manner compared with the control group (C2). The mean diameter of tissue cyst was significantly reduced in mice of the experimental groups Ex2 (p < 0.01) and Ex3 (p < 0.001). The results demonstrated that although the mRNA levels of IFN-γ and IL-12 were elevated in all mice of experimental groups, a significant increase (p < 0.001) was observed in tested groups of Ex2 and Ex3 when compared with control groups. Conclusion: The findings of the present study demonstrated the potent prophylactic effects of MCEO especially in the doses 200 and 300 mg/kg in mice infected with T. gondii. Although the exceptional anti-Toxoplasma effects of MCEO and other possessions, such as improved innate immunity and low toxicity are positive topics, there is, however, a need for more proof from investigations in this field.  相似文献   

7.
Interferons play critical roles in tumor pathogenesis by controlling apoptosis and through cellular anti-proliferative and differentiation activities. Interferon inducible transmembrane protein (IFITM) family genes have been implicated in several cellular processes such as the homotypic cell adhesion functions of IFN and cellular anti-proliferative activities. Expression levels of IFITM genes have been found to be up-regulated in gastric cancer cells and colorectal tumors. IFITM3 (also known as 1-8U) is a member of the IFITM family, and has been described as a key player in specification of germ cell fate. IFITM3 was first isolated from a genetic screen aimed at identifying genes involved in acquisition of germ cell competence. It has been proposed that epiblast cells have the highest expression of IFITM3 initiated germ cell specification and that homotypic association can discriminate germ cells from their somatic neighbors. In an attempt to better understand the genetic influences of IFITM3 on ulcerative colitis, we have identified possible variation sites and single nucleotide polymorphisms (SNPs) through two exons and their boundary IFITM3 intron sequences including the ~2.1 kb promoter regions. To determine whether or not these IFITM3 SNPs are associated with susceptibility to ulcerative colitis, frequencies of the genotype and allele of IFITM3 polymorphisms were analyzed on genomic DNAs isolated from patients with ulcerative colitis and from healthy controls. We also investigated the haplotype frequencies constructed by these SNPs in both groups. In this study, we also showed that expression level of IFITM3 mRNA was significantly higher in tissues of the ileum and cecum of the digestive system. We identified a total of seven SNPs and multiple variation regions in the IFITM3 gene. The genotype frequency of the g.-204T>G polymorphism in patients with ulcerative colitis was significantly different from that of the control group. Our results strongly suggest that polymorphisms of the IFITM3 gene may be associated with susceptibility to ulcerative colitis.  相似文献   

8.
9.
Behçet''s disease (BD) is a chronic systemic inflammatory disorder characterized by four major manifestations: recurrent uveitis, oral and genital ulcers and skin lesions. To identify some pathogenic variants associated with severe Behçet''s uveitis, we used targeted and massively parallel sequencing methods to explore the genetic diversity of target regions. A solution-based target enrichment kit was designed to capture whole-exonic regions of 132 candidate genes. Using a multiplexing strategy, 32 samples from patients with a severe type of Behçet''s uveitis were sequenced with a Genome Analyzer IIx. We compared the frequency of each variant with that of 59 normal Korean controls, and selected five rare and eight common single-nucleotide variants as the candidates for a replication study. The selected variants were genotyped in 61 cases and 320 controls and, as a result, two rare and seven common variants showed significant associations with severe Behçet''s uveitis (P<0.05). Some of these, including rs199955684 in KIR3DL3, rs1801133 in MTHFR, rs1051790 in MICA and rs1051456 in KIR2DL4, were predicted to be damaging by either the PolyPhen-2 or SIFT prediction program. Variants on FCGR3A (rs396991) and ICAM1 (rs5498) have been previously reported as susceptibility loci of this disease, and those on IFNAR1, MTFHR and MICA also replicated the previous reports at the gene level. The KIR3DL3 and KIR2DL4 genes are novel susceptibility genes that have not been reported in association with BD. In conclusion, this study showed that target enrichment and next-generation sequencing technologies can provide valuable information on the genetic predisposition for Behçet''s uveitis.  相似文献   

10.
Amino acids present ergogenic action, helping to increase, protect, and restore the muscular system of young athletes. Moreover, the encapsulation of five relevant amino acids in chocolate pellet form will appeal to them, facilitating their daily consumption. A reliable HPLC fluorimetric method was developed to detect and quantitatively determine L-Leucine, L-Isoleucine, L-Histidine, L-Valine, and β-Alanine in chocolate using aniline as an internal standard. Experimental design methodology was used to investigate and optimize the clean-up procedure of the samples. Therefore, three extraction techniques (solid-phase extraction (by two different SPE cartridges) and liquid–solid extraction (LSE)) were compared and evaluated. The LOQ values in chocolate varied from 24 to 118 ng/g (recovery 89.7–95.6%, %RSD < 2.5). Amino acids were pre-column derivatized with o-phthalaldehyde (OPA), while derivatization parameters were thoroughly investigated by experimental design methodology. The analysis was performed by HPLC-fluorescence (emission: λ = 455 nm, excitation: λ = 340 nm) method using a C18 column and a mixture of phosphate buffer (pH = 2.8; 20 mM)-methanol as a mobile phase in gradient elution. The method was validated (r2 > 0.999, %RSD < 2, LOD: 10 ng mL−1 for histidine and leucine, 2 ng mL−1 for alanine and valine, and 4 ng mL−1 for Isoleucine) according to the International Conference on Harmonization guidelines.  相似文献   

11.
Single nucleotide polymorphisms (SNPs) are associated with many human diseases, so accurate and efficient SNP detection is of great significance for early diagnosis and clinical prognosis. This report proposes a universal and high-fidelity genotyping method in microfluidic point-of-care equipment based on the clustered regularly interspaced short palindromic repeat (CRISPR) system. Briefly, by systematically inserting the protospacer-adjacent-motif (PAM) sequence, we improved the universality of the CRISPR/Cas12a based SNP detection; by removing the complementary ssDNA and introducing an additional nucleotide mismatch, we improved the sensitivity and specificity. We preloaded the CRISPR/Cas12a reagents into the point-of-care biochip for automating the process, increasing the stability and long-term storage. This biochip enables us to rapidly and conveniently detect the genotypes within 20 min. In a practical application, the CRISPR/Cas12a biochip successfully distinguished three genotypes (homozygous wild type; the homozygous mutant type; and the heterozygous mutant type) of the CYP1A1*2 (A4889G, rs1048943), CYP2C19*2 (G681A, rs4244285), CYP2C9*3 (A1075C, rs1057910), and CYP2C19*3 (G636A, rs4986893) genes related to multiple cancers from 17 clinical blood samples. This CRISPR/Cas12a-based SNP genotyping method, being universal, accurate, and sensitive, will have broad applications in molecular diagnostics and clinical research.

A universal and high-fidelity genotyping method based on the clustered regularly interspaced short palindromic repeat (CRISPR) system was performed on the microfluidic point-of-care equipment.  相似文献   

12.
Neurodegenerative diseases, e.g., Alzheimer’s disease (AD), are a key health problem in the aging population. The lack of effective therapy and diagnostics does not help to improve this situation. It is thought that ligands influencing multiple but interconnected targets can contribute to a desired pharmacological effect in these complex illnesses. Histamine H3 receptors (H3Rs) play an important role in the brain, influencing the release of important neurotransmitters, such as acetylcholine. Compounds blocking their activity can increase the level of these neurotransmitters. Cholinesterases (acetyl- and butyrylcholinesterase) are responsible for the hydrolysis of acetylcholine and inactivation of the neurotransmitter. Increased activity of these enzymes, especially butyrylcholinesterase (BuChE), is observed in neurodegenerative diseases. Currently, cholinesterase inhibitors: donepezil, rivastigmine and galantamine are used in the symptomatic treatment of AD. Thus, compounds simultaneously blocking H3R and inhibiting cholinesterases could be a promising treatment for AD. Herein, we describe the BuChE inhibitory activity of H3R ligands. Most of these compounds show high affinity for human H3R (Ki < 150 nM) and submicromolar inhibition of BuChE (IC50 < 1 µM). Among all the tested compounds, 19 (E153, 1-(5-([1,1′-biphenyl]-4-yloxy)pentyl)azepane) exhibited the most promising in vitro affinity for human H3R, with a Ki value of 33.9 nM, and for equine serum BuChE, with an IC50 of 590 nM. Moreover, 19 (E153) showed inhibitory activity towards human MAO B with an IC50 of 243 nM. Furthermore, in vivo studies using the Passive Avoidance Task showed that compound 19 (E153) effectively alleviated memory deficits caused by scopolamine. Taken together, these findings suggest that compound 19 can be a lead structure for developing new anti-AD agents.  相似文献   

13.
Shiga-toxin-producing Escherichia coli (STEC) is an important pathogen associated to food-borne infection in humans; strains of E. coli O181, isolated from human cases of diarrhea, have been classified as belonging to this pathotype. Herein, the structure of the O-antigen polysaccharide (PS) from E. coli O181 has been investigated. The sugar analysis showed quinovosamine (QuiN), glucosamine (GlcN), galactosamine (GalN), and glucose (Glc) as major components. Analysis of the high-resolution mass spectrum of the oligosaccharide (OS), obtained by dephosphorylation of the O-deacetylated PS with aqueous 48 % hydrofluoric acid, revealed a pentasaccharide composed of two QuiNAc, one GlcNAc, one GalNAc, and one Glc residue. The 1H and 13C NMR chemical shift assignments of the OS were carried out using 1 D and 2 D NMR experiments, and the OS was sequenced using a combination of tandem mass spectrometry (MS/MS) data and NMR 13C NMR glycosylation shifts. The structure of the native PS was determined using NMR spectroscopy, and it consists of branched pentasaccharide repeating units joined by phosphodiester linkages: →4)[α-l-QuipNAc-(1→3)]-α-d-GalpNAc6Ac-(1→6)-α-d-Glcp-(1→P-4)-α-l-QuipNAc-(1→3)-β-d-GlcpNAc-(1→; the O-acetyl groups represent 0.4 equivalents per repeating unit. Both the OS and PSs exhibit rare conformational behavior since two of the five anomeric proton resonances could only be observed at an elevated temperature.  相似文献   

14.
As part of an ongoing project aimed at identifying protective capsular polysaccharide epitopes for the development of vaccine candidates against the fungal pathogen Cryptococcus neoformans, the synthesis and glycosylation properties of a naphthalenylmethyl (NAP) orthogonally protected trisaccharide thioglycoside, a common building block for construction of serotype B and C capsular polysaccharide structures, were investigated. Ethyl (benzyl 2,3,4‐tri‐O‐benzyl‐β‐d‐glucopyranosyl‐ uronate)‐(1→2)‐[2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl‐(1→4)]‐6‐O‐benzyl‐3‐O‐(2‐naphthalenylmethyl)‐1‐thio‐α‐d‐mannopyranoside was prepared and used both as a donor and an acceptor in glycosylation reactions to obtain spacer equipped hexa‐ and heptasaccharide structures suitable either for continued elongation or for deprotection and printing onto a glycan array or conjugation to a carrier protein. The glycosylation reactions proceeded with high yields and α‐selectivity, proving the viability of the building block approach also for construction of 4‐O‐xylosyl‐containing C. neoformans CPS structures.  相似文献   

15.
Postovulatory aging of the mammalian oocytes causes deterioration of oocytes through several factors including oxidative stress. Keeping that in mind, we aimed to investigate the potential of a well-known antioxidant, resveratrol (RV), to evaluate the adverse effects of postovulatory aging in porcine oocytes. After in vitro maturation (IVM), a group of (25–30) oocytes (in three replicates) were exposed to 0, 1, 2, and 4 μmol/L of RV, respectively. The results revealed that the first polar body (PB1) extrusion rate of the oocytes significantly increased when the RV concentration reached up to 2 μmol/L (p < 0.05). Considering optimum RV concentration of 2 μmol/L, the potential of RV was evaluated in oocytes aged for 24 and 48 h. We used fluorescence microscopy to detect the relative level of reactive oxygen species (ROS), while GHS contents were measured through the enzymatic method. Our results revealed that aged groups (24 h and 48 h) treated with RV (2 μmol/L) showed higher (p < 0.05) ROS fluorescence intensity than the control group, but lower (p < 0.05) than untreated aged groups. The GSH content in untreated aged groups (24 h and 48 h) was lower (p < 0.05) than RV-treated groups, but both groups showed higher levels than the control. Similarly, the relative expression of the genes involved in antioxidant activity (CAT, GPXGSH-Px, and SOD1) in RV-treated groups was lower (p < 0.05) as compared to the control group but higher than that of untreated aged groups. Moreover, the relative mRNA expression of caspase-3 and Bax in RV-treated groups was higher (p < 0.05) than the control group but lower than untreated groups. Furthermore, the expression of Bcl-2 in the RV-treated group was significantly lower than control but higher than untreated aged groups. Taken together, our findings revealed that the RV can increase the expression of antioxidant genes by decreasing the level of ROS, and its potent antiapoptotic effects resisted against the decline in mitochondrial membrane potential in aged oocytes.  相似文献   

16.
Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by α-galactosidase A gene (GLA) mutations, resulting in loss of activity of the lysosomal hydrolase, α-galactosidase A (α-Gal A). As a result, the main glycosphingolipid substrates, globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3), accumulate in plasma, urine, and tissues. Here, we propose a simple, fast, and sensitive method for plasma quantification of lyso-Gb3, the most promising secondary screening target for FD. Assisted protein precipitation with methanol using Phree cartridges was performed as sample pre-treatment and plasma concentrations were measured using UHPLC-MS/MS operating in MRM positive electrospray ionization. Method validation provided excellent results for the whole calibration range (0.25–100 ng/mL). Intra-assay and inter-assay accuracy and precision (CV%) were calculated as <10%. The method was successfully applied to 55 plasma samples obtained from 34 patients with FD, 5 individuals carrying non-relevant polymorphisms of the GLA gene, and 16 healthy controls. Plasma lyso-Gb3 concentrations were larger in both male and female FD groups compared to healthy subjects (p < 0.001). Normal levels of plasma lyso-Gb3 were observed for patients carrying non-relevant mutations of the GLA gene compared to the control group (p = 0.141). Dropping the lower limit of quantification (LLOQ) to 0.25 ng/mL allowed us to set the optimal plasma lyso-Gb3 cut-off value between FD patients and healthy controls at 0.6 ng/mL, with a sensitivity of 97.1%, specificity of 100%, and accuracy of 0.998 expressed by the area under the ROC curve (C.I. 0.992 to 1.000, p-value < 0.001). Based on the results obtained, this method can be a reliable tool for early phenotypic assignment, assessing diagnoses in patients with borderline GalA activity, and confirming non-relevant mutations of the GLA gene.  相似文献   

17.
Fat globule size and phospholipid (PL) content in human milk (HM) were investigated. HM was classified into three groups depending on fat content (A < B < C). PL content (mg/100 g HM) was significantly higher in the C group (p < 0.05), indicating its positive relationship with HM fat content. When the PL content was normalized (mg/g fat), that of group A was significantly higher (p < 0.05) and fat droplet size in group C was slightly larger, suggesting that HM fat content is affected by fat droplet numbers to a larger extent than by fat droplet size. A correlation between PC and SM content in HM was observed regardless of fat content, while correlation between PE and either PC or SM increased in the order of C > B > A, hence the composition and content of PL species in HM varied according to its fat content.  相似文献   

18.
An analysis of the effects induced by F, Cl, and Br-substituents at the α-position of both, the hydroxyl or the amino group for a series of amino-alcohols, HOCH2(CH2)nCH2NH2 (n = 0–5) on the strength and characteristics of their OH···N or NH···O intramolecular hydrogen bonds (IMHBs) was carried out through the use of high-level G4 ab initio calculations. For the parent unsubstituted amino-alcohols, it is found that the strength of the OH···N IMHB goes through a maximum for n = 2, as revealed by the use of appropriate isodesmic reactions, natural bond orbital (NBO) analysis and atoms in molecules (AIM), and non-covalent interaction (NCI) procedures. The corresponding infrared (IR) spectra also reflect the same trends. When the α-position to the hydroxyl group is substituted by halogen atoms, the OH···N IMHB significantly reinforces following the trend H < F < Cl < Br. Conversely, when the substitution takes place at the α-position with respect to the amino group, the result is a weakening of the OH···N IMHB. A totally different scenario is found when the amino-alcohols HOCH2(CH2)nCH2NH2 (n = 0–3) interact with BeF2. Although the presence of the beryllium derivative dramatically increases the strength of the IMHBs, the possibility for the beryllium atom to interact simultaneously with the O and the N atoms of the amino-alcohol leads to the global minimum of the potential energy surface, with the result that the IMHBs are replaced by two beryllium bonds.  相似文献   

19.
This is the first ligase chain reaction used for diagnosis of spinal muscular atrophy (SMA). Universal fluorescent tri-probe ligation (UFTPL), a novel strategy used for distinguishing the multi-nucleotide alternations at single base, is developed to quantitatively analyze the SMN1/SMN2 genes in diagnosis of SMA. Ligase chain reaction was performed by adding three probes including universal fluorescent probe, connecting probe and recognizing probe to differentiate single nucleotide polymorphisms in UFTPL. Our approach was based on the two UFTPL products of survival motor neuron 1 (SMN1) and SMN2 genes (the difference of 9 mer) and analyzed by capillary electrophoresis (CE). We successfully determined various gene dosages of SMN1 and SMN2 genes in homologous or heterologous subjects. By using the UFTPL-CE method, the SMN1 and SMN2 genes were fully resolved with the resolution of 2.16 ± 0.37 (n = 3). The r values of SMN1 and SMN2 regression curves over a range of 1–4 copies were above 0.9944. Of the 48 DNA samples, the data of gene dosages were corresponding to that analyzed by conformation sensitive CE and denatured high-performance liquid chromatography (DHPLC). This technique was found to be a good methodology for quantification or determination of the relative genes having multi-nucleotide variants at single base.  相似文献   

20.
Two new epimeric bibenzylated monoterpenes machaerifurogerol (1a) and 5-epi-machaerifurogerol (1b), and four known isoflavonoids (+)-vestitol (2), 7-O-methylvestitol (3), (+)-medicarpin (4), and 3,8-dihydroxy-9-methoxypterocarpan (5) were isolated from Machaerium Pers. This plant was previously assigned as Machaerium multiflorum Spruce, from which machaeriols A-D (6–9) and machaeridiols A-C (10–12) were reported, and all were then re-isolated, except the minor compound 9, for a comprehensive antimicrobial activity evaluation. Structures of the isolated compounds were determined by full NMR and mass spectroscopic data. Among the isolated compounds, the mixture 10 + 11 was the most active with an MIC value of 1.25 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) strains BAA 1696, −1708, −1717, −33591, and vancomycin-resistant Enterococcus faecium (VRE 700221) and E. faecalis (VRE 51299) and vancomycin-sensitive E. faecalis (VSE 29212). Compounds 6–8 and 10–12 were found to be more potent against MRSA 1708, and 6, 11, and 12 against VRE 700221, than the drug control ciprofloxacin and vancomycin. A combination study using an in vitro Checkerboard method was carried out for machaeriols (7 or 8) and machaeridiols (11 or 12), which exhibited a strong synergistic activity of 12 + 8 (MIC 0.156 and 0.625 µg/mL), with >32- and >8-fold reduction of MIC’s, compared to 12, against MRSA 1708 and −1717, respectively. In the presence of sub-inhibitory concentrations on polymyxin B nonapeptide (PMBN), compounds 10 + 11, 11, 12, and 8 showed activity in the range of 0.5–8 µg/mL for two strains of Acinetobacter baumannii, 2–16 µg/mL against Pseudomonas aeruginosa PAO1, and 2 µg/mL against Escherichia coli NCTC 12923, but were inactive (MIC > 64 µg/mL) against the two isolates of Klebsiella pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号