首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We report a theoretical and experimental investigation of the effects of collisional quenching on resonant degenerate four-wave mixing (DFWM). Using single-mode laser radiation, peak signal intensity measurements were performed on an isolated line in the A – X transition of NO. By using appropriate mixtures of N2 and CO2 as buffer gases, we varied the collisional quenching rate over several orders of magnitude while maintaining a fixed total collisional dephasing rate. The mixtures had approximately 100 Torr total pressure and were at room temperature. For I/I sat approximately equal to 0.02, DFWM intensities were found to be less affected by variations in quench rate than were laser-induced fluorescence (LIF) intensities (I and I sat are the pump laser and one-photon saturation intensities, respectively). Moreover, for I/I sat roughly equal to 0.5, DFWM intensities were observed to be nearly independent of quench rate. The results are compared to two theoretical predictions, with good agreement observed. Both theories indicate that the minimum sensitivity of DFWM to quenching occurs near I/I sat1.  相似文献   

2.
在碘蒸气中研究了染料激光稳定性对简并四波混频(DFWM)信噪比的影响。实验中采用多模Nd∶YAG激光器倍频的输出泵浦染料激光器(染料PM580溶于酒精)。在具有前向补偿分光系统和图像探测系统的帮助下,在常温常压条件下测得泵浦光在波长为554.013 nm时达到饱和光强为290 μJ。同时发现染料激光器的光稳定性(输出波长范围,光束质量和能量转换效率等)随使用时间,泵浦激光脉冲次数和能量的增加而逐渐减弱。另外通过对比发现在染料激光器输出不稳定时,光源单色性和指向性等指标的变化导致在同一泵浦强度不同时刻获得的DFWM信号强度相差很大,且DFWM信号信噪比低。染料激光器光源稳定性对DFWM信号影响的研究结果对物质的痕迹量探测以及无荧光物质光谱定标等方面的应用具有重要意义。  相似文献   

3.
We describe the effects of He, Ar and N2 on the resonant degenerate four-wave-mixing spectrum of NO2. We report results obtained using the phase-conjugate and forward-geometry experimental configurations for various laser intensities and bandwidths. We find that the effect of buffer-gas pressure on the reflectivity of the laser-induced grating depends critically on the relative value of the laser intensityI to the saturation parameterI sat. WhenI I sat the four-wave-mixing signal initially decreases with increasing buffer-gas pressure. However, at pressures above ca. 100 Torr the signal increases. WhenI I sat the signal is found to increase with buffer-gas pressure even at the lowest pressures studied. These observations do not agree with the standard model of degenerate four-wave mixing in the gas phase. We have investigated the source of these effects by employing different polarisation geometries of the pump and probe laser fields, and conclude that thermal gratings are responsible for the increase in signal observed at high buffer-gas pressure. This conclusion is supported by a simple gas kinetic model.  相似文献   

4.
4 –air flame, with OH at 2000 K. We calculate the ratio of LIF intensities that would be induced by doubled dye-laser light near 283 nm, by means of the A←X, 1←0, P1(7), and Q2(11) transitions in OH. Here we show that the ratio of LIF signals from those two transitions, and thus the deduced temperature, is sensitive to laser intensity. That is caused mainly by the competition between laser-pumping of molecules out of the lower rotational state and of rotational energy transfer (RET) collisions into that state. A-state collisional effects are normally important, but are minimized here by assuming that they are the same for both transitions. The laser spectral intensity dependence of the fluorescence ratio depends heavily upon the value of the RET coefficients within the X-state. While RET reduces the sensitivity of the observed signal to the laser spectral intensity, the conversion of a measured fluorescence ratio to temperature is particularly difficult. That is because RET rates, and quenching rates, can be a function of local conditions and of the rotational state being populated. Two different models are used to demonstrate these effects, and both predict large effects upon temperature. Received: 19 February 1998/Revised version: 16 June 1998  相似文献   

5.
Using the DFWM technique we determined rotational and vibrational temperatures of NaH molecules in a dynamical system consisting of NaH, Na, H and H2 for several heat-pipe oven temperatures. We applied a new way to determine the dependence of the DFWM signalI c int on the power of the transition dipole momentµ without previous knowledge of the temperature. The revealed dependence isI c int µ 4. In this case the laser intensities were found to be of the same order as the saturation intensity in accordance with simple DFWM theory. A usual Boltzmann plot was employed for the determination of the relevant rotational temperatures, which displayed higher values than the oven temperature.  相似文献   

6.
The feasibility of using degenerate four‐wave mixing (DFWM) for hot gas thermometry in the mid‐infrared spectral region is, for the first time, demonstrated by probing molecular ro‐vibrational transitions of water. DFWM spectra of hot water were recorded in specially designed flames, providing a series of temperatures varying from 1000 to 1900 K and, the dramatic spectral structure variations were used as temperature indicator. The intensity ratios between two hot water line groups at around 3231 cm−1 were especially studied and composed into a calibration table for flame temperature measurement using DFWM spectra. The saturation properties of different lines were also studied by recording the line intensity ratios as a function of laser power, and the results indicated that saturated excitation was in favor of reliable temperature measurements. As validation, infrared DFWM spectra in an φ = 1.52 flat premixed methane/air flame were recorded, and a good temperature value was obtained. Moreover, the recently released HITEMP2010 database as well as its previous version HITEMP2000 were adopted to simulate the hot water spectra and to analyze the line intensity ratios. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Gas-phase oxygen quenching of toluene laser-induced fluorescence (LIF) is studied between 300 and 650 K in a nitrogen/oxygen bath gas of 1-bar total pressure with oxygen partial pressures up to 400 mbar. With increasing vibrational excitation of the laser-excited toluene, intramolecular decay becomes faster, resulting in a decreasing relative strength of collisional quenching by oxygen. Additionally, Stern–Volmer plots are found to be non-linear for temperatures above 500 K in the case of 266-nm excitation and at all temperatures for 248-nm excitation. This is attributed to the onset of internal conversion from specific vibrational levels. A photophysical model is developed that describes the experimental data and predicts toluene LIF signal strengths for higher oxygen partial pressures. One important result for practical application is that oxygen quenching is not the dominant de-excitation process for engine-related temperature and pressure conditions, and thus application of the popular fuel–air ratio LIF (FARLIF) concept leads to erroneous signal interpretation.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

8.
Over the past three years we have developed the technique of buffer-gas cooling and loading of atoms and molecules into magnetic traps. Buffer-gas cooling relies solely on elastic collisions (thermalization) of the species-to-be-trapped with a cryogenically cooled helium gas and so is independent of any particular energy level pattern. This makes the cooling technique general and potentially applicable to any species trappable at the temperature of the buffer gas (as low as 240 mK). Using buffer-gas loading, paramagnetic atoms (europium and chromium) as well as a molecule (calcium monohydride) were trapped at temperatures around 300 mK. The numbers of the trapped atoms and molecules were respectively about 1012 and 108. The atoms and molecules were produced by laser ablation of suitable solid precursors. In conjunction with evaporative cooling, buffer-gas loaded magnetic traps offer the means to further lower the temperature and increase the density of the trapped ensemble to study a large variety of both static (spectra) and dynamic (collisional cross-sections) properties of many atoms and molecules at ultra-low temperatures. In this article we survey our main results obtained on Cr, Eu, and CaH and outline prospects for future work. Received 2 November 1998 and Received in final form 19 February 1999  相似文献   

9.
10.
Experiments on pressure dependence of a CF4 laser have been carried out to elucidate dynamic characteristics of CF4 molecules pumped by CO2 lasers. The results are followed by a model calculation which characterizes collisional quenching of the energy levels related to the stimulated emission. The enhancement of the laser output induced by buffer-gas addition, which was found under specific conditions, is discussed in relation to the competition between laser and superfluorescent emissions.  相似文献   

11.
Two-dimensional rotational temperature measurement was performed in a stable combustion flame of premixed butane and oxygen using multiline laser induced fluorescence (LIF) of nitric oxide molecules. Multiple rotational absorption lines of A2+Π;X2II(0,0) Q1 and Q2 lines were excited by laser light around 226 nm, and the LIF signal was observed by an image-intensified digital camera. Temperature was determined through least squares fitting correlation between LIF intensity and excitation rotational quantum number for the Boltzmann distribution function. The measured LIF intensity was approximated by the Boltzmann distribution with good accuracy, and the temperature obtained was between 500 K and 1800 K for the test flame. The measuring error of the temperature was evaluated and found to be 80 K, which corresponded to 8% of the measured fluorescence intensity. The two-line LIF scheme was evaluated by different pairs of excitation lines (Q1(31.5)/Q1(16.5) and Q1(18.5)/Q1(16.5)) for comparison with the multiline LIF approach. Temperature which was obtained by two-line LIF scheme corresponded well with multiline LIF results for Q1(31.5)/Q1(16.5) excitation. However, for Q1(18.5)/Q1(16.5) excitation, the obtained temperature did not agree with the multiline LIF result because the population of rotational states J=18.5 and J=16.5 is similar at high temperatures. We found that two-line LIF temperature measurement was reliable when excitation lines were suitably selected.  相似文献   

12.
This paper presents experimental evidence that using the KrF excimer laser for quantitative laser-induced fluorescence (LIF) studies of the OH A-X (3,0) system is highly problematic if the effects of both photobleaching and photochemistry are not included for laser spectral irradiances greater than 20 MW/cm2 cm-1. Pump-probe and time-resolved measurements of the OH LIF signal in an atmospheric pressure, premixed CH4-air flame at low- and high-laser-spectral-irradiance conditions show that a significant amount of OH is produced from photofragments resulting from the simultaneous 2-photon predissociation of H2O molecules in the C-X system. A 5+2-level rate-equation model that includes the effects of both photobleaching and photochemical OH production is shown to satisfactorily predict the data using a single adjustable parameter given by the effective, spectrally integrated 2-photon cross-section of H2O near 248 nm. The time-integrated OH LIF signal was found to depend on both the laser spectral irradiance and the local concentration of H2O. Additionally, use of the KrF excimer laser for 2-line rotational thermometry can produce temperature errors as great as +550 K at high laser-pulse energies. Received: 21 August 2000 / Revised version: 30 October 2000 / Published online: 21 February 2001  相似文献   

13.
We measure the small-signal gain coefficient g 0 and the saturation-energy intensity E s of a gold-vapor laser by implementing an oscillator-amplifier on the base of the gold-vapor laser. The dependence of the gain and saturation properties of the laser on the length of the laser active medium, the buffer-gas pressure, and the buffer-gas type are studied. The measurements of g 0 for the amplifier for different lengths of the laser active medium (60 and 75 cm) show that with increase in the active-medium length, g 0 increases while E s, vice versa, decreases. Such behavior of g 0 and E s is observed in the whole range of changing the total pressure of buffer gas in the He-Ne mixture.  相似文献   

14.
Using laser-induced fluorescence (LIF), spatially resolved concentration profiles of formaldehyde (H2CO) were obtained in the preheating zone of atmospheric-pressure premixed CH4/air flames stabilized on the central slot of a multiple-slot burner similar in construction to domestic boilers. The isolated pQ1(6) rotational line (339.23 nm) in the 21 041 0 vibronic combination transition in the ?1A2- 1A1 electronic band system around 339 nm was excited in the linear LIF intensity regime. For a quantification of quenching effects on the measured LIF signal intensities, relative fluorescence quantum yields were determined from direct fluorescence lifetime as a function of height above the slot exit. Absolute H2CO number densities in the flames were evaluated from a calibration of measured LIF signal intensities versus those obtained in a low-pressure sample with a known H2CO vapor pressure. Peak concentrations in the slightly lean and rich flames reached (994±298) and (174±52) ppm, respectively. Received: 25 September 2000 / Published online: 30 November 2000  相似文献   

15.
We present measurements of dark-line resonances excited in cesium atoms confined in submillimeter cells with a buffer gas. The width and contrast of the resonances were measured for cell lengths as low as 100 microm. The measured atomic Q factors are reduced in small cells because of frequent collisions of atoms with the cell walls. However, the contrast of coherent population trapping resonances measured in the small cells is similar in magnitude to that obtained in centimeter-sized cells, but substantially more laser intensity is needed to excite the resonance fully when increased buffer-gas pressure is used. The effect of the higher intensity on the linewidth is reduced because the intensity broadening rate decreases with buffer-gas pressure.  相似文献   

16.
We have studied the use of wide-band detection in conjunction with saturation of a rovibronic transition of OH within itsA 2 +X 2(0,0) band. For wide-band detection, in which fluorescence is detected from the entire excited rotational manifold, the fluorescence yield is sensitive to collisions in two ways. First, it is sensitive to the ratio of rate coefficients describing rotational energy transfer and electronic quenching; this ratio determines the number of neighboring rotational levels that are populated during the laser pulse. Second, the fluorescence yield can vary with the total collisional rate coefficient; only after a sufficient number of collisions, corresponding to 2.5 ns in an atmospheric flame, does the rotational manifold reach steady state. We also compare measurements employing wide-band (detecting theR 1 andR 2 branches) and narrow-band (detecting a single transition) saturated fluorescence of OH. Over a wide range of conditions — obtained by varying the equivalence ratio, temperature, N2 dilution, and pressure — the wide- and narrow-band fluorescence techniques compare well. Given this good agreement, wide-band saturated fluorescence could be especially useful for analyzing atmospheric flames with XeCl-excimer lasers; one can potentially obtain 2—D images of OH which have a high signal-to-noise ratio and a reduced sensitivity to laser irradiance and quenching.  相似文献   

17.
Single shot degenerate four wave mixing (DFWM) images of the distribution of nitrogen dioxide (NO2) doped into a propane/air flame at concentrations of the order of 7000 ppm have been obtained. These images indicate the relative concentration of NO2 in different parts of the flame with an estimated spatial resolution of 150 m.Initial experiments were performed using NO2 in a glass cell with nitrogen buffer gas. DFWM signals were generated using both the frequency doubled output of a pulsed ND:YAG laser and the tunable blue output of an excimer pumped dye laser. The signal was investigated as a function of laser power, NO2 concentration and buffer gas pressure. In addition, spectra of NO2 in the region 450 to 480 nm were obtained.Signals were then sought in both a cold air/NO2 gas flow and an ignited mixture of propane and air seeded with NO2, using a DFWM imaging geometry. The resulting images from the flame demonstrate the disappearance of the NO2 molecules in the flame interaction zone.This work was done when previously employed by AEA Technology at Harwell  相似文献   

18.
Analysis of degenerate four-wave mixing spectra of NO in a CH4/N2/O2 flame   总被引:1,自引:0,他引:1  
4 /N2/O2 flame to spectral simulations based on a two-level theory for stationary, saturable absorbers by Abrams et al. Temperatures determined from least-squares fits of simulations to experimental spectra in the A2Σ+?X2Π+(0,0) band are compared to temperatures obtained from OH absorption spectroscopy and a radiation-corrected thermocouple. We find that DFWM rotational temperatures derived from Q-branch spectra agree with thermocouple and are independent of pump laser intensity for low to moderate saturation (I≈Isat). However, the temperatures are systematically low and depend on pump intensity if the analysis neglects saturation effects. We demonstrate a method for obtaining an effective pump saturation intensity for use with the two-level model. This approach for analyzing saturated DFWM line intensities differs from previous work in that the use of the theory of Abrams et al. rather than a transition-dipole-moment power law allows treatment of a much wider range of saturation. Based on the observed signal-to-noise ratio an NO detection sensitivity of 25 ppm is projected, limited by a DFWM background interference specific to hydrocarbon flames. Received: 15 September 1998 / Revised version: 18 November 1998 / Published online: 24 February 1999  相似文献   

19.
Poly(indenofluorene) shows a strong degenerate four-wave mixing (DFWM) response when it is excited with 100-fs pulses at 800 nm. The DFWM signal scales with the 1.5 power of the input intensity, which we interpret as being due to absorption saturation phenomena. The saturation was studied by open-aperture Z scan in dilute solutions of poly(indenofluorene) in chloroform. The changes in the absorption coefficient alpha are described by the formula alpha = alpha(0)/[1 + (I/I(sat))(1/2)], where I(sat) is the saturation intensity, which is found to be of the order of 100>MW/cm(2).  相似文献   

20.
The absorption (amplification) spectrum of a weak probe field by two-level atoms located in a strong resonant laser field and colliding with buffer-gas atoms is analyzed theoretically. The analysis is performed for low collision frequencies compared to the Doppler absorption linewidth (low gas pressure) and with allowance made for an arbitrary change in the phase of the radiation-induced dipole moment at elastic collisions between gas particles. The phase memory effects have been found to lead to a strong qualitative and quantitative transformation of the probe-field spectrum even at rare collisions, when the well-known Dicke manifestation mechanism of the phase memory effects (the removal of Doppler broadening due to the restriction of the spatial particle motion by collisions) is inoperative. The strong influence of the phase memory effects on the spectral resonances at low gas pressures stems from the fact that the phase-conserving collisions change the velocity dependence of the partial refractive index n(v) (the refractive index for particles moving with velocity v).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号