首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
Based on the tripodal 1,3,5‐tris(imidazol‐1‐yl)benzene (tib) ligand, four transition metal coordination polymers, namely, {[Ni3(tib)2(H2O)12] · (SO4)3}n ( 1 ), {[Co1/6(tib)1/3] · (O)1/3}n ( 2 ), and [M(tib)(hip)]n (M = Mn for 3 , and M = Co for 4 ) (hip = 5‐hydroxyisophthalic acid), were synthesized through solvothermal method. Their structures were defined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectra, powder X‐ray diffraction (PXRD), and thermogravimetric analyses (TGA). Complex 1 displays a 2D 3‐connected (63) hcb net. Complex 2 is a 2D (3,6)‐connected (43)2(46.66.83) kgm net. Complex 3 and 4 present similar 2D 4‐connected (44.62) sql net. Moreover, the solid state luminescence properties of complexes 1 and 3 were investigated.  相似文献   

2.
Three copper(II) coordination polymers [Cu(mbtz)2(NCS)2]n ( 1 ), [Cu(mbtz)2Cl2]n ( 2 ) and [Cu(mbtz)(btec)0.5]n ( 3 ) (mbtz=1,3‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene, btec=1,2,4,5‐benzenetetracarboxylate) were synthesized. In 1 and 2 , two mbtz ligands are wrapped around each other and are held together by Cu(II) atoms to form one‐dimensional double chain. In 3 , each btec ligand connects four Cu(II) atoms through its four carboxylate groups, resulting in a planar two‐dimensional [Cu(btec)0.5]n network. The Cu(II) atoms are further coordinated mbtz ligands to fulfil their coordination geometry and construct new [Cu(btec)0.5(mbtz)]n network. 2 and 3 further form the three‐dimensional network through the π···π stacking interactions between the mbtz ligands. The thermal stabilities of 1 , 2 and 3 were measured.  相似文献   

3.
Three copper(II) coordination polymers (CuCPs), namely, [Cu0.5(1,4‐bib)(SO4)0.5]n ( 1 ), {[Cu(1,3‐bib)2(H2O)] · SO4 · H2O}n ( 2 ), and [Cu(bpz)(SO4)0.5]n ( 3 ), were assembled from the reaction of three N‐donors [1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and Hbpz = 3‐(2‐pyridyl)pyrazole] with copper sulfate under hydrothermal conditions. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric analyses (TGA). Structure analyses reveal that complex 1 is a 3D 6‐connected {412 · 63}‐ pcu net, complex 2 is a fourfold 3D 4‐connected 66‐ dia net, whereas complex 3 is a 1D snake‐like chain, which further expanded into 3D supramolecular architectures with the help of C–H ··· O hydrogen bonds. Moreover, the photocatalytic tests demonstrate that the obtained CuCPs are photocatalysts in the degradation of MB with the efficiency is 86.4 % for 1 , 75.3 % for 2 , and 91.3 % for 3 after 2 h, respectively.  相似文献   

4.
Two coordination polymers based on 1, 6‐bis(2‐methyl‐imidazole‐1‐yl)‐hexane (bimh), namely {[Zn3(BTC)2(bimh)] · (bimh)}n ( 1 ) and {[Zn(IPA)(bimh)] · (CH3CH2OH)0.5}n ( 2 ) (H3BTC = trimesic acid, H2IPA = isophthalic acid), were synthesized through hydrothermal reactions. In compound 1 , the zinc(II) ions are bridged by BTC3– ligands to form an undulating infinite two‐dimensional (2D) polymeric network. The 3D networks of 1 show a twofold interpenetrating net. In compound 2 , zinc(II) ions are bridged by IPA2– ligands to form one‐dimensional (1D) helical structures. The 2D structures of 2 are further assembled into 3D networks through aromatic π–π stacking interactions. Both compounds exhibit strong photoluminescence at room temperature and may be good candidates for potential luminescence materials.  相似文献   

5.
Abstract. Two metal‐organic coordination polymers [Co(bmb)(btc)0.5]n( 1 ) and {[Zn(bmb)0.5(btc)0.5(H2O)] · 0.5bmb · H2O}n ( 2 ) [H4btc = benzene‐1, 2, 4, 5‐tetracarboxylic acid, bmb = 1, 4‐bis(2‐methylbenzimidazol‐1‐ylmethyl) benzene] were prepared under hydrothermal conditions. Single‐crystal X‐ray diffraction indicates that both complexes have a 2D framework structure with (4 · 62) (42 · 62 · 82) topology. Interestingly, the hydrogen bonds in 2 form a fascinating meso‐helix. The catalytic activity of 1 for oxidative coupling of 2, 6‐dimethylphenol (DMP) and the photoluminescence properties of 2 were investigated. Furthermore, the complexes were investigated by IR spectroscopy and thermogravimetric analysis.  相似文献   

6.
The coordination polymers (CPs), [Ni(L)(H2O)4]n ( 1 ), [Co(HL)2(H2O)2]n ( 2 ), {[Cu(L)(H2O)3] · H2O}n ( 3 ), [Mn(L)(H2O)2]n ( 4 ), [Cd(L)(H2O)2]n ( 5 ), and {[Zn2(L)2] · H2O}n ( 6 ), were solvothermally synthesized by employing the imidazol‐carboxyl bifunctional ligand 4‐(1H‐imidazol‐1‐yl) phthalic acid (H2L). Single‐crystal X‐ray diffraction indicated that the L2–/HL ligands display various coordination modes with different metal ions in 1 – 6 . Complexes 1 and 2 show one‐dimensional (1D) chain structures, whereas complexes 3 – 6 show 2D layered structures. The magnetic properties of these complexes were investigated. Complexes 1 and 3 indicate weak ferromagnetic interactions, whereas complexes 2 and 4 demonstrate antiferromagnetic interactions. In addition, luminescence properties of 5 and 6 were measured and studied in detail.  相似文献   

7.
The hydro­thermal reaction of an aqueous solution of Cu(CH3COO)2·H2O, 1,2,4,5‐benzene­tetra­carboxylic acid and 4,4′‐bi­pyridine gave rise to the interesting title three‐dimensional polymer {[Cu6(btec)3(4,4′‐bpy)3(H2O)2]·2H2O}n (btec is 1,2,4,5‐benzene­tetra­carboxyl­ate, C10H2O84−, and 4,4′‐bpy is 4,4′‐bi­pyridine, C10H8N2), in which each btec ligand links six copper(II) cations into a lamellar [Cu6(btec)3(H2O)2]n sub­polymer framework. There are two distinct diamine units and two distinct carboxylate units, with one of each lying across an inversion centre.  相似文献   

8.
Two coordination polymers, [Cd(Heidc)(bpp)]n ( 1 ) and [Zn3 (eidc)2(bpp)(H2O)2] · 2H2O}n ( 2 ) (H3eidc = 2‐ethyl‐4,5‐imidazole dicarboxylic acid, bpp = 1,3‐bis(4‐pyridyl)propane) were hydrothermally synthesized and characterized by elemental analysis, IR, spectroscopy single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 features a 2D layer formed by C–H ··· π stacking interactions between adjacent chains, whereas compound 2 shows a 3D (83)2(85.10)‐tfc framework constructed of the 2D (6,3) layer. The result demonstrates that the central metal atoms play a key role in governing the coordination motifs. Moreover, solid‐state properties such as thermal stabilities and photoluminescence of 1 and 2 were also investigated.  相似文献   

9.
Abstract. The 3D cobalt(II) coordination polymers [Co1.5(HDDB)(1,4‐bib)1.5(H2O)]n ( 1 ), and {[Co2(DDB)(1,3‐bib)22‐H2O)] · H2O}n ( 2 ) were assembled by mixed‐ligand synthetic strategy [H4DDB = 1,3‐bis(2,4‐dicarboxyphenyl) benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and 1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Single X‐ray diffraction analysis reveals that complex 1 is an interestingly 3D (3,3.6)‐connected (63)4(65 · 88 · 102) net, and complex 2 is an unprecedented dinuclear [Co2(COO)(μ2‐H2O)] SBUs based 3D (3,6)‐connected (3 · 6 · 7)(32 · 43 · 54 · 63 · 7 · 82) net. Additionally, the magnetic properties of 2 were investigated.  相似文献   

10.
Two manganese(II) coordination polymers, namely, [Mn1.5(BCB)(bpy)1.5(H2O)]n ( 1 ), and [Mn(HBCB)(bibp)2(H2O)] ( 2 ), were assembled from the mixed ligands of the flexible tripodal ligand of 3,5‐bis(2‐carboxylphenoxy)benzoic acid (H3BCB) and two rigid N‐donors [bpy = 4,4′‐bipyridine, and bibp = 4,4′‐bis(imidazolyl)biphenyl]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectra, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Structural analysis reveals that complex 1 is a 3D (3,4,6)‐connected {5 · 62}2{56 · 64 · 7 · 82 · 92}{64 · 8 · 9} net based on two kinds of inorganic nodes of dinuclear {Mn2(COO)2} SBUs and Mn(2) ions. Complex 2 is a hydrogen bonds based 3D supramolecule with 6‐connected {412 · 63}‐ pcu net. Besides, the variable‐temperature susceptibilities of 1 and 2 were investigated.  相似文献   

11.
Based on the bis‐triazole ligand 2, 6‐bis(1, 2,4‐triazole‐4‐yl)pyridine (L), the triazole‐iron(II) complexes [Fe(L)2(dca)2(H2O)2] · 2H2O ( 1 ) (Nadca = sodium dicyanamide), {[Fe(μ2‐L)2(H2O)2]Cl2}n ( 2 ), and {[Fe(μ2‐L)2(H2O)2](ClO4)2 · L · H2O}n ( 3 ) were isolated by solvent diffusion methods. When iron(II) salts and Nadca were used, compound 1 was isolated, which contains mononuclear Fe(L)2(dca)2(H2O)2 units. When FeCl2 or FeClO4 were used, one‐dimensional (1D) cation iron(II) chains ( 2 ) and two‐dimensional (2D) cation iron(II) networks ( 3 ) were isolated indicating anion directing structural diversity. Moreover, variable‐temperature magnetic susceptibility data of 1 – 3 were recorded in the temperature range 2–300 K. The magnetic curve of complex 2 was fitted by using the classical spin Heisenberg chain model indicating anti‐ferromagnetic interactions (J = –5.31 cm–1). Obviously complexes 1 – 3 show no detectable thermal spin crossover behaviors, the lack of spin‐crossover behavior may be correlated with FeN4O2 coordination spheres in 1 – 3 .  相似文献   

12.
Four ZnII/CdII coordination polymers (CPs) based on 2‐(4‐carboxy‐phenyl)imidazo[4, 5‐f]‐1, 10‐phenanthroline (HNCP) and different derivatives of 5‐R‐1, 3‐benzenedicarboxylate (5‐R‐1, 3‐BDC) (R = NO2, H, OH), [Zn(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 1 ), [Cd(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 2 ), [Zn(HNCP)(1, 3‐BDC)(H2O)2]n ( 3 ), and {[Zn(HNCP)(5‐OH‐1, 3‐BDC)(H2O) · H2O}n ( 4 ) were synthesized under hydrothermal conditions. Compounds 1 – 4 were determined by elemental analyses, IR spectroscopy, and single‐crystal and powder X‐ray diffraction. Compounds 1 and 2 are isomorphous, presenting a 4‐connected uninodal (4, 4)‐sql 2D framework with threefold interpenetration, which are further extended into the three‐dimensional (3D) supramolecular architecture through π ··· π stacking interactions between the aryl rings of 5‐NO2‐1, 3‐BDC. Compared to compound 1 , 3 is obtained by using different reaction temperatures and metal‐ligand ratios, generating a 3D framework with –ABAB– fashion via π ··· π stacking interactions. Compound 4 is a 1D chain, which is further extended into a 3D supramolecular net by hydrogen bonds and π ··· π stacking interactions. The thermogravimetric and fluorescence properties of 1 – 4 were also explored.  相似文献   

13.
Three metal coordination polymers {[Co(L)2(H2O)2]2+ · 2NO3}n ( 1 ), {[Mn(L)2(H2O)2]2+ · 2Cl · 3H2O}n ( 2 ), and [ZnL(ba)2]n ( 3 ) [L = 3,5‐bis(imidazole‐1‐yl)pyridine and Hba = benzoic acid] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a one‐dimensional (1D) chain structure. Adjacent chains are connected by hydrogen bonding and nitrate groups to form a 3D network. Complex 2 features a 2D layer structure. A three‐dimensional network is constructed through the cluster consisting of two chloride ions and three water molecules. Complex 3 shows a 1D zigzag chain structure that further twists together to form a 3D network. The X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, the luminescent properties of 1 – 3 were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the three complexes.  相似文献   

14.
Three metal coordination polymers [Zn(bdc)(L)(H2O)]n ( 1 ), [Co(pta)(L)(H2O)2]n ( 2 ), and [Cd(tda)(L)(H2O)]n ( 3 ) [H2bdc = 1,2‐benzene dicarboxylate acid, H2pta = terephthalic acid, H2tda = 2,5‐thiophenedicarboxylic acid, L = 3,5‐bis(imidazole‐1‐yl)pyridine] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a three‐dimensional (3D) structure with cco topology with the symbol 65 · 8, whereas complex 2 features a 3D structure with cds topology with the symbol 65 · 8. Complex 3 has a 2D network constructed by the cadmium atoms bridged through the ligands tda and L. Their X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, their luminescent properties were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the 3D networks.  相似文献   

15.
Five new coordination polymers, namely, [Ni2(L)2(4, 4′‐bipy)3)] · H2O]n ( 1 ), [Ni2(L)2(O) (bpp)2]n ( 2 ), [Zn(L)(bib)0.5]n ( 3 ), [Zn(L)(PyBIm)]n ( 4 ), and [Zn3(L)2(OH)(im)]n ( 5 ) [H2L = benzophenone‐2, 4′‐dicarboxylic acid, 4, 4′‐bipy = 4, 4′‐bipyridine, bpp = 1, 3‐bis(4‐pyridyl)propane, PyBIm = 2‐(4‐pyridyl)benzimidazole, and im = imidazole] were synthesized under hydrothermal conditions. Structure determination revealed that compound 1 is a 3D network and exhibits a 4‐connected metal‐organic framework with (42.63.8) topology, whereas compounds 2 , 3 , 4 , and 5 are two‐dimensional layer structures. In compounds 2 – 4 , dinuclear metal clusters are formed through carboxylic groups. In compound 5 , trinuclear metal clusters are formed through μ3‐OH and carboxylic groups. The carboxylic groups exhibit three coordination modes in compounds 1 – 5 : monodentately, bidentate‐chelating, and bis‐monodentately. Furthermore, the luminescent properties for compounds 3 , 4 , and 5 were investigated.  相似文献   

16.
Two coordination polymers (CPs), {[Zn2(BMB)(5‐AIPA)2] · 2H2O}n( 1 ) and [Zn(BMB)(5‐NIPA)]n( 2 ) {BMB = 1, 4‐bis[(2‐methyl‐imidazol‐1‐yl)methyl]benzene, 5‐AIPA = 5‐aminoisophthalic acid, 5‐NIPA = 5‐nitroisophthalic acid}, were synthesized under hydrothermal conditions. Compound 1 displays a 2D double‐layer structure, which is packed into a 3D supramolecule by interlayer hydrogen bonds and π–π stacking interactions. Compound 2 displays a threefold interpenetrating 3D network, which is composed of left‐handed helical chains and two types of meso‐helical chains along different directions.  相似文献   

17.
The reaction of 4,4′‐bis(1,2,4‐triazol‐1‐ylmethyl)biphenyl (btmb) with silver(I) salts of BF4, NO3 and N3 led to the formation of four new silver(I) coordination polymers {[Ag(btmb)]BF4}n ( 1 ), {[Ag2(btmb)3](NO3)2(H2O)5}n ( 2 ), [Ag2(btmb)(N3)2]n ( 3 ), and [Ag(btmb)(N3)]n ( 4 ). Their coordination number varies from 2 (in 1 ) to 3 (in 2 ), 4 (in 3 ), and 5 (in 4 ). Different from the single chain structure of 1 , complex 2 displays a 1D ladder‐like double chain framework, whereas complex 3 exhibits a 2D layered architecture. Complex 4 has the same anion as complex 3 but shows a different metal‐to‐ligand ratio and a 1D double‐zigzag chain structure. Both 3 and 4 have Ag ··· Ag argentophilic interactions. The ligand btmb adopts both cis or trans configuration in the studied complexes. A trans‐ or cis‐btmb ligand link silver ions with Ag ··· Ag distances of ≈?18 and 13 Å, respectively. BF4 and NO3 are non‐coordinating anions in 1 and 2 . N3 is the bridging anion in 3 (1,3‐bridging fashion) and 4 (1,1‐bridging fashion). These findings suggest that the coordination numbers around the AgI ion correlate to the coordination abilities of anions and the btmb to silver ratio. In addition, the influence of anions on thermal stability were also investigated. This work is a good example that nicely supports the less explored field of anion‐dependent structures of complexes with non‐pyridyl ligands.  相似文献   

18.
The coordination polymers, {[Co(bbim)2(H2O)2](tcbdc) · 2H2O}n ( 1 ), {[Ni(tcbdc)(bbim)(H2O)2] · 2DMF}n ( 2 ), and {[Cu2(tcbdc)2(bbim)4] · 4H2O}n ( 3 ) [bbim = 1,1′‐(1,4‐butanediyl)bis(imidazole) and tcbdc2– = tetrachlorobenzene‐1,4‐dicarboxylate] were synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, luminescence, and single‐crystal X‐ray diffraction analysis. Complex 1 has a double‐stranded chain structure through doubly bridged [Co(bbim)2] units. Complex 2 exhibits two‐dimensional square grid, whereas complex 3 has a three‐dimensional porous network structure with an unprecedented 44 · 611 topological structure through interpenetrating square grid. The water molecules in complex 3 occupy the vacancy through three kinds of hydrogen bond interactions. Upon excitation at 370 nm, complexes 1 – 3 present solid‐state luminescence at room temperature.  相似文献   

19.
Three two‐dimensional (2D) coordination complexes, namely [Ca2(HL)2(H2O)5]n · 2nH2O ( 1 ), [Sr(HL)(H2O)3]n · nH2O ( 2 ), and [Ba(HL)(H2O)3]n · nH2O ( 3 ) [H3L = 3‐(3‐carboxy‐phenoxy) phthalic acid], were synthesized by using the ligand H3L and alkaline earth metals. Structural analysis reveals that the structures of complexes 1 – 3 can be described as 2D networks with the point (Schälfli) symbol for net: {312 · 414 · 52} topology. Additionally, the thermal stability and solid‐state luminescent properties of compounds 1 – 3 were investigated at room temperature. The quantum yield (QY) of compound 2 is 10.75 %, which is much higher than the QY of the free H3L ligand (QYH3L < 1 %).  相似文献   

20.
Two coordination polymers, namely {[Mn(2,4′‐bpdc)(bimb)(H2O)0.5] · 0.5H2O}n ( 1 ) and [Mn(4,4′‐bpdc)(bimb)]n · 2.5H2O ( 2 ) [2,4′‐bpdc = biphenyl‐2,4′‐dicarboxylate, 4,4′‐bpdc = biphenyl‐4,4′‐dicarboxylate, and bimb = 1,4‐bis(1‐imidazol‐yl)‐2,5‐dimethyl benzene], were hydrothermally synthesized by reactions of manganese(II) salt with the rigid ligand 1,4‐bis(1‐imidazol‐yl)‐2,5‐dimethyl benzene and isomeric biphenyl dicarboxylate ligands. Complex 1 has an unusual 6‐connected three‐dimensional (3D) architecture with point symbol (44.611). Complex 2 has also a 3D structure with two‐interpenetrated pcu topology with point symbol (412.63). Structural comparisons show that the positions of the carboxylate groups in the ligand backbone play an important role in governing the structural topologies of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号