首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A novel tetradentate dianionic Schiff base ligand, N ,N ′‐bis(2‐carboxyphenylimine)‐2,5‐thiophenedicarboxaldhyde (H2L) and some first row d‐transition metal chelates (Co(II), Cu(II), Ni(II) and Zn(II)) were synthesized and characterized using various physicochemical and spectroscopic methods. The spectroscopic data suggested that the parent Schiff base ligand coordinates through both deprotonated carboxylic oxygen and imine nitrogen atoms. The free Schiff base and its metal chelates were screened for their antimicrobial activities for various pathogenic bacteria and fungi using the agar well diffusion method. The antibacterial and antifungal activities of all the newly synthesized compounds are significant compared to the standard drugs ciprofloxacin and nystatin. The antioxidant activities of the compounds were determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C as a standard. DNA binding ability of the novel Schiff base and its complexes was investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order: Cu(II) complex > Ni(II) complex > Zn(II) complex > Co(II) complex >H2L. Furthermore, the DNA cleavage activity of the newly synthesized ligand and its metal complexes was investigated using supercoiled plasmid DNA (pUC18) gel electrophoresis.  相似文献   

2.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

3.
The tetradentate Schiff base ligand (SB), N,N′‐bis‐(2‐mercaptophenylimine)‐2,5‐thiophenedicarboxaldehyde was prepared via condensation of 2,5‐thiophene‐dicarboxaldehyde with 2‐aminothiophenol in a 1:2 molar ratio by conventional method. Additionally, its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized and fully characterized by elemental analysis, FT‐IR, 1H NMR, 13C NMR, UV–Vis, ESR, ESI‐mass, conductivity and magnetic susceptibility measurements. Spectral studies suggested that, the Schiff base coordinate metal ions through the azomethine N‐ and deprotonated thiol S‐ atoms. Based on UV–Vis absorption and magnetic susceptibility data, tetrahedral geometry was assigned for both Co(II) and Zn(II) complexes, whereas on the other hand, square planar geometry for both Ni(II) and Cu(II) complexes. The Schiff base and its metal complexes were screened for their in vitro antimicrobial activity by minimum inhibitory concentration (MIC) method. Free radical scavenging activity of the novel compounds was determined by elimination of 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radicals. In addition, the interactions of the free ligand and its complexes with calf thymus DNA (CT‐DNA) were explored using absorption, emission and viscosity measurements techniques.  相似文献   

4.
A series of mononuclear complexes of the type, [MLCl2] [M = CoII, NiII, CuII, and ZnII] with a pyrimidene‐type ligand, which was synthesized by the reaction of 2‐furaldehyde and 1, 8‐diaminonaphthalene, was obtained. The ligand and its complexes were characterized by elemental analysis, IR, NMR, EPR, and UV/Vis spectroscopy, ESI‐mass spectrometry, magnetic susceptibility, molar conductivity, and thermogravimetric analyses. On the basis of UV/Vis spectroscopic and magnetic susceptibility data, an octahedral arrangement was assigned around all metal ions. The low molar conductivity data for all the complexes show their non‐electrolytic nature. The thermal behavior of the complexes was studied by TGA analyses. The electrochemical study carried out on the CuII complex exhibits a quasi reversible redox process. The ligand and its complexes showed potential antioxidant and antimicrobial activities.  相似文献   

5.
Three coordination polymers, namely {[Cu(5‐nipa)(L22)](H2O)2}n ( 1 ), [Zn(5‐nipa)(L22)(H2O)]n ( 2 ), and {[Cd2(5‐nipa)2(L22)(H2O)3](H2O)3.6}n ( 3 ), were prepared under similar synthetic method based on 1,2‐(2‐pyridyl)‐1,2,4‐triazole (L22) and ancillary ligand 5‐nitro‐isophthalic acid (5‐H2nipa) with CuII, ZnII, and CdII perchlorate, respectively. All the complexes were characterized by IR spectroscopy, elemental analysis, and powder X‐ray diffraction (PXRD) patterns. Single‐crystal X‐ray diffraction indicates that complexes 1 and 2 show similar 1D chain structures, whereas complex 3 exhibits the 2D coordination network with hcb topology. The central metal atoms show distinct coordination arrangements ranging from distorted square‐pyramid for CuII in 1 , octahedron for ZnII in 2 , to pentagonal‐bipyramid for CdII in 3 . The L22 ligand adopts the same (η32) coordination fashion in complexes 1 – 3 , while the carboxyl groups of co‐ligand 5‐nipa2– adopt monodentate fashion in 1 and 2 and bidentate chelating mode in 3 . These results indicate that the choice of metal ions exerts a significant influence on governing the target complexes. Furthermore, thermal stabilities of complexes 1 – 3 and photoluminescent properties of 2 and 3 were also studied in the solid state.  相似文献   

6.
Two aliphatic ether Schiff base lanthanide complexes (Ln = Eu, Ce) with bis(3‐methoxysalicylidene)‐3‐oxapentane‐1,5‐diamine (Bod), were synthesized and characterized by physicochemical and spectroscopic methods. [Eu(Bod)(NO3)3] ( 1 ) is a discrete mononuclear species and [Ce(Bod)(NO3)3DMF] ( 2 ) exhibits an inorganic coordination polymer. In the two complexes, the metal ions both are ten‐coordinated and the geometric structure around the LnIII atom can be described as distorted hexadecahedron. Under excitation at room temperature, the red shift in the fluorescence band of the ligand in the complexes compared with that of the free ligand can be attributed to coordination of the rare earth ions to the ligand. Moreover, the antioxidant activities of the two complexes were investigated. The results demonstrated that the complexes have better scavenging activity than both the ligand and the usual antioxidants on the hydroxyl and superoxide radicals.  相似文献   

7.
The two title complexes, [Zn2(C13H9Cl2N2O)2(C2H3O2)2], (I), and [Cu2(C13H9Cl2N2O)2(NCS)2], (II), are dinuclear Schiff base compounds. Both mol­ecules are located on crystallographic centres of inversion. In (I), the ZnII atom is five‐coordinated in a trigonal–bipyramidal coordination, with one imine N atom of one Schiff base and two acetate O atoms defining the basal plane, and one O atom and one pyridine N atom of the Schiff base occupying the axial positions, while in (II), the CuII atom is five‐coordinated in a square‐pyramidal coordination, with one O and two N atoms of one Schiff base and one terminal N atom of a bridging thio­cyanate ligand defining the basal plane, and one terminal S atom of another bridging thio­cyanate ligand occupying the apical position. The different bridging ligands lead to the different coordinations of the complexes.  相似文献   

8.
A novel bi‐nucleating Schiff base ligand, 6,6′‐(((1E,1′E)‐thiophene‐2,5‐diylbis (methaneylylidene))bis (azaneylylidene))bis (3,4‐dimethylaniline), and five binuclear M (II) complexes were synthesized. The bi‐nucleating Schiff base ligand and its metal complexes were characterized using various physicochemical techniques, e.g. elemental analyses, spectroscopic methods, conductivity and magnetic moment measurements. The low molar conductance of the complexes in dimethylsulfoxide shows their non‐electrolytic nature. The antibacterial activities were screened against pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas putida and Bacillus subtilis). The antifungal activity was screened against Aspergillus niger, Aspergillus flavus and Rhizoctonia bataicola. The antimicrobial activity data showed that the metal complexes are more potent than the parent Schiff base ligand against microorganisms. The antioxidant activities of the synthesized compounds were investigated through scavenging activity against 2,2‐diphenyl‐2‐picrylhydrazyl, superoxide anion, hydroxyl and 2,2′‐ azinobis (3‐ethylbenzothiazoline‐6‐sulfonic acid) radicals. The complexes have superior radical scavenging activity than the free ligand and the scavenging effects of the Cu (II) complex are stronger than those of the other complexes. DNA binding studies were performed using electronic spectroscopy, fluorometric competition studies and viscosity measurements. The data indicated that there is a marked enhancement in biocidal activity of the ligand under similar experimental conditions because of coordination with metal ions.  相似文献   

9.
Phosphorus‐based Schiff base were synthesized by treating bis{3‐[2‐(4‐amino‐1.5‐dimethyl‐2‐phenyl‐pyrazol‐3‐ylideneamino)ethyl]‐indol‐1‐ylmethyl}‐phosphinic acid with paraformaldehyde and characterized as a novel antioxidant. Its corresponding complexes [(VO)2L(SO4)2], [Ni2LCl4], [Co2LCl4], [Cu2LCl4], [Zn2LCl4], [Cd2LCl4], [Hg2LCl4], [Pd2LCl4], and [PtLCl]Cl2 were analyzed by Fourier transform‐infrared, (1H and 13C) nuclear magnetic resonance, and mass and UV–Vis spectroscopy. Experimental data showed that the ligand coordinated with the metal ions via donor atoms such as nitrogen to form an octahedral arrangement of the Schiff base around the central transition‐metal atom. The nature of these complexes was identified using the molar ratio and Job's methods, with the results agreeing with a metal‐to‐ligand (M:L) molar ratio of 2:1, expect for Pt, whose M:L was 1:1. Thermodynamic activation parameters such as ?E*, ?H*, ?S*, ?G*, and K were determined from the thermogravimetric analysis curve using the Coats–Redfern method. The antioxidant activities of the prepared compounds were assessed by using 1.1‐diphenyl‐2‐picrylhydrazyl as the free radical, and the results show that the complex Schiff bases were found to possess potent antioxidant activity. The structure–activity relationship of the ligand and its complexes indicates that the presence of electron‐donating moieties, such as Co(II) and Ni(II), in the chemical structure increases the antioxidant activity, whereas the Pt(IV) and Pd(II) complexes diminished the antioxidant activity, indicating the superior activity of the hydroxyl radical (OH·) over the superoxide radical.  相似文献   

10.
Three zinc(II) ions in combination with two units of enantiopure [3+3] triphenolic Schiff‐base macrocycles 1 , 2 , 3 , or 4 form cage‐like chiral complexes. The formation of these complexes is accompanied by the enantioselective self‐recognition of chiral macrocyclic units. The X‐ray crystal structures of these trinuclear complexes show hollow metal–organic molecules. In some crystal forms, these barrel‐shaped complexes are arranged in a window‐to‐window fashion, which results in the formation of 1D channels and a combination of both intrinsic and extrinsic porosity. The microporous nature of the [Zn3 1 2] complex is reflected in its N2, Ar, H2, and CO2 adsorption properties. The N2 and Ar adsorption isotherms show pressure‐gating behavior, which is without precedent for any noncovalent porous material. A comparison of the structures of the [Zn3 1 2] and [Zn3 3 2] complexes with that of the free macrocycle H3 1 reveals a striking structural similarity. In H3 1 , two macrocyclic units are stitched together by hydrogen bonds to form a cage very similar to that formed by two macrocyclic units stitched together by ZnII ions. This structural similarity is manifested also by the gas adsorption properties of the free H3 1 macrocycle. Recrystallization of [Zn3 1 2] in the presence of racemic 2‐butanol resulted in the enantioselective binding of (S)‐2‐butanol inside the cage through the coordination to one of the ZnII ions.  相似文献   

11.
The condensation of 2‐acetylferrocene with 4‐nitro‐1,2‐phenylenediamine in a 1:1 molar ratio, resulting in formation of a novel bi‐dentate organometallic Schiff base ligand (L), (2‐(1‐((2‐amino‐5‐nitrophenyl)imino)ethyl)cyclopenta‐2,4‐dien‐1‐yl)(cyclopenta‐2,4‐dien‐1‐yl)iron. Also, its Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes have been synthesized. The stoichiometric ratios of the prepared compounds were estimated using elemental analysis (C, H, N, M), molar conductivity, FT‐IR, UV‐Vis, 1H‐NMR, SEM and mass spectral analysis. Furthermore, their TG and DTG properties were studied. The geometrical structure of the complexes was found to be octahedral. From spectral analysis, the Schiff base coordinated to metal ions through the azomethine and amine groups. DFT‐based molecular orbital energy calculations of the synthesized ligand have been studied, in which the ligand was theoretically optimized. The Schiff base and its metal complexes have been screened for their antimicrobial activities against different bacterial and fungal species by using disc diffusion method. The anticancer activities of the ligand and its metal complexes have also been studied towards breast cancer (MCF‐7) and human normal melanocytes (HFB‐4) cell lines. Molecular docking was also used to identify the interaction between the Schiff base ligand and its Cd(II) complex with the active site of the receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), crystal structure of Staphylococcus aureus (PDB ID: 3Q8U) and yeast‐specific serine/threonine protein phosphatase (PPZ1) of Candida albicans (PDB ID:5JPE).  相似文献   

12.
A new tetracarboxylate ligand having short and long arms formed 2D layer ZnII coordination polymer 1 with paddle‐wheel secondary building units under solvothermal conditions. The framework undergoes solvent‐specific single crystal‐to‐single crystal (SC‐SC) transmetalation to produce 1Cu . With a sterically encumbered dipyridyl linker, the same ligand forms non‐interpenetrated, 3D, pillared‐layer ZnII metal–organic framework (MOF) 2 , which takes part in SC‐SC linker‐exchange reactions to produce three daughter frameworks. The parent MOF 2 shows preferential incorporation of the longest linker in competitive linker‐exchange experiments. All the 3D MOFs undergo complete SC‐SC transmetalation with CuII, whereby metal exchange in different solvents and monitoring of X‐ray structures revealed that bulky solvated metal ions lead to ordering of the shortest linker in the framework, which confirms that the solvated metal ions enter through the pores along the linker axis.  相似文献   

13.
An unexpected polyhydroxyl‐bridged tetranuclear ZnII complex and a benzoquinone compound derived from metal‐ion promoted reactivity of Schiff base ligands were synthesized and characterized. The reaction of zinc(II) acetate dihydrate with oxime‐type Schiff base ligand HL1 [HL1 = 1‐(3‐((3,5‐dibromosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime] in methanol, acetone, and acetonitrile resulted in the chemoselective cleavage of the C=N bond of the Schiff base HL1, and then the further addition of acetone to two salicylaldehyde molecules derived from cleavage of the C=N bond in situ α,α double aldol reaction promoted by ZnII ions. The newly formed ligands H4L2 coordinate to four ZnII ions forming a defect‐dicubane core structure [ZnII4(H2L2)23‐OCH3)2(μ‐OCH3)2(CH3OH)2] ( 1 ) bridged exclusively by oxygen‐based ligands. The similar ligand HL3 [HL3 = 1‐(3‐((3,5‐dichlorosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime)] was employed to react with CdII acetate dihydrate under the same reaction conditions. No aldol addition occurred but a unexpected benzoquinone compound 2,5‐bis(((3‐(1‐((benzyloxy)imino)ethyl)phenyl)imino)methyl)‐1,4‐benzoquinone ( 2 ) formed. The results provided interesting insights into one‐pot routes involving in situ reactions act as a strategy for obtaining a variety of polymeric/polynuclear complexes which are inconvenient to obtain from directly presynthesizing the ligands.  相似文献   

14.
With the rapid development of metal–organic frameworks (MOFs), a variety of MOFs and their derivatives have been synthesized and reported in recent years. Commonly, multifunctional aromatic polycarboxylic acids and nitrogen‐containing ligands are employed to construct MOFs with fascinating structures. 4,4′,4′′‐(1,3,5‐Triazine‐2,4,6‐triyl)tribenzoic acid (H3TATB) and the bidentate nitrogen‐containing ligand 1,3‐bis[(imidazol‐1‐yl)methyl]benzene (bib) were selected to prepare a novel ZnII‐MOF under solvothermal conditions, namely poly[[tris{μ‐1,3‐bis[(imidazol‐1‐yl)methyl]benzene}bis[μ3‐4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoato]trizinc(II)] dimethylformamide disolvate trihydrate], {[Zn3(C24H12N3O6)2(C14H14N4)3]·2C3H7NO·3H2O}n ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction, IR spectroscopy and powder X‐ray diffraction. The properties of 1 were investigated by thermogravimetric and fluorescence analysis. Single‐crystal X‐ray diffraction shows that 1 belongs to the monoclinic space group Pc. The asymmetric unit contains three crystallographically independent ZnII centres, two 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoate (TATB3?) anions, three complete bib ligands, one and a half free dimethylformamide molecules and three guest water molecules. Each ZnII centre is four‐coordinated and displays a distorted tetrahedral coordination geometry. The ZnII centres are connected by TATB3? anions to form an angled ladder chain with large windows. Simultaneously, the bib ligands link ZnII centres to give a helical Zn–bib–Zn chain. Furthermore, adjacent ladders are bridged by Zn–bib–Zn chains to form a fascinating three‐dimensional self‐penetrated framework with the short Schläfli symbol 65·7·813·9·10. In addition, the luminescence properties of 1 in the solid state and the fluorescence sensing of metal ions in suspension were studied. Significantly, compound 1 shows potential application as a fluorescent sensor with sensing properties for Zr4+ and Cu2+ ions.  相似文献   

15.
The Schiff base N,N′‐bis(salicylidene)‐1,5‐diamino‐3‐oxapentane (H2L) and its lanthanide(III) complexes, PrL(NO3)(DMF)(H2O) ( 1 ) and Ho2L2(NO3)2 · 2H2O ( 2 ), were synthesized and characterized by physicochemical and spectroscopic methods. Single crystal X‐ray structure analysis revealed that complex 1 is a discrete mononuclear species. The PrIII ion is nine‐coordinate, forming a distorted capped square antiprismatic arrangement. Complex 2 is a centrosymmetric dinuclear neutral entity in which the HoIII ion is eight‐coordinate with distorted square antiprismatic arrangement. The DNA‐binding properties of H2L and its LnIII complexes were investigated by spectrophotometric methods and viscosity measurements. The results suggest that the ligand H2L and its LnIII complexes both connect to DNA in a groove binding mode; the complexes bind more strongly to DNA than the ligand. Moreover, the antioxidant activities of the LnIII complexes were in vitro determined by superoxide and hydroxyl radical scavenging methods, which indicate that complexes 1 and 2 have OH · and O2– · radical scavenging activity.  相似文献   

16.
A new complex of copper(II) picrate (pic) with 1, 3‐bis(1‐allaylbenzimidazol‐2‐yl)‐2‐oxopropane (aobb), with the composition [Cu(aobb)2](pic)2, was synthesized and characterized. The crystal structure of the copper(II) complex revealed that the coordination environment around the central copper(II) atom is a distorted octahedral arrangement. Electronic absorption spectroscopy, ethidium bromide displacement experiments and viscosity measurements indicate that the ligand and the CuII complex can strongly bind to calf thymus DNA, presumably by an intercalation mechanism. Furthermore, the antioxidant activity of the CuII complex was determined by superoxide and hydroxyl radical scavenging method in vitro, which indicate that the CuII complex has the activity to suppress OH · and O2 · –.  相似文献   

17.
The homoleptic complexes ZnII(4′‐(2‐(5‐R‐thienyl))‐terpyridine)2(ClO4)2 [R = hydrogen ( 1 ), bromo ( 2 ), methyl ( 3 ), and methoxy ( 4 )] were prepared. Their structures were determined by single‐crystal X‐ray diffraction analyses, and further characterized by high resolution mass, infrared spectra (IR), and elemental analyses. Single crystal X‐ray diffraction analysis showed that ZnII ions in the complexes are both six‐coordinate with N6 coordination sphere, displaying distorted octahedral arrangements. The absorption and emission spectra of the homoleptic ZnII complexes were investigated and compared to those of the parent complex ZnII(4′‐(2‐thienyl))‐terpyridine)2(ClO4)2. The UV/Vis absorption spectra showed that the complexes all exhibit strong absorption component in UV region, moreover, complex 4 has an absorption component in the visible region. Thus, the photocatalytic activities of the complexes in degradation of organic dyes were investigated under UV and visible irradiation.  相似文献   

18.
Assembly of bidentate ligand 1‐(1‐imidazolyl)‐4‐(imidazol‐1‐ylmethyl)benzene (IIMB) with varied metal salts of ZnII, CdII and PbII provide three new complexes, [Zn(IIMB)2](ClO4)2·2H2O ( 1 ), [Cd(IIMB)2(SCN)2] ( 2 ) and [Pb(IIMB)2(SCN)](SCN) ( 3 ). Single crystal X‐ray diffraction studies revealed that complexes 1 and 2 display a similar one‐dimensional double stranded chain structure, while complex 3 is a slight distorted rhombohedral grid network with (4,4) topology. The results indicate that the coordination geometry of the metal ion and the counter anion have great impact on the structure of the complexes. In addition, the photoluminescence properties of ligand IIMB and complexes 1 – 3 were studied in the solid state at room temperature.  相似文献   

19.
Nine new coordination compounds have been synthesized by the reaction of salts of bivalent metal ions (a=ZnII, b=CuII, c=NiII, d=CoII) with the bis(benzoylhydrazone) derivative of 4,6‐diacetylresorcinol (H4L). Three kinds of complexes have been obtained: homodinuclear compounds [M2(H2L)2]?nH2O ( 1 a , 1 b , 1 c , and 1 d ), homotetranuclear compounds [M4(L)2]?n(solv) ( 2 a and 2 c ), and heterotetranuclear compounds [Zn2M2(L)2]?n(solv) ( 2 ab , 2 ac , and 2 ad ). The structures of the free ligand H4L?2 DMSO and its complexes [Zn2(H2L)2(DMSO)2] ( 1 a* ), [Zn4(L)2(DMSO)6] ( 2 a* ), and [Zn0.45Cu3.55(L)2(DMSO)6]?2 DMSO ( 2 ab* ) were elucidated by single‐crystal X‐ray diffraction. The ligand shows luminescence properties and its fluorimetric behavior towards MII metals (M=Zn, Cu, Ni and Co) has been studied. Furthermore, the solid‐state luminescence properties of the ligand and compounds have been determined at room temperature. 1H NMR spectroscopic monitoring of the reaction of H4L with ZnII showed the deprotonation sequence of the OH/NH groups upon metal coordination. Heteronuclear reactions have also been monitored by using ESI‐MS and spectrofluorimetric techniques.  相似文献   

20.
Studies of double‐stranded‐DNA binding have been performed with three isomeric bis(2‐(n‐pyridyl)‐1H‐benzimidazole)s (n=2, 3, 4). Like the well‐known Hoechst 33258, which is a bisbenzimidazole compound, these three isomers bind to the minor groove of duplex DNA. DNA binding by the three isomers was investigated in the presence of the divalent metal ions Mg2+, Co2+, Ni2+, Cu2+, and Zn2+. Ligand–DNA interactions were probed with fluorescence and circular dichroism spectroscopy. These studies revealed that the binding of the 2‐pyridyl derivative to DNA is dramatically reduced in the presence of Co2+, Ni2+, and Cu2+ ions and is abolished completely at a ligand/metal‐cation ratio of 1:1. Control experiments done with the isomeric 3‐ and 4‐pyridyl derivatives showed that their binding to DNA is unaffected by the aforementioned transition‐metal ions. The ability of 2‐(2‐pyridyl)benzimidazole to chelate metal ions and the conformational changes of the ligand associated with ion chelation probably led to such unusual binding results for the ortho isomer. The addition of ethylenediaminetetraacetic acid (EDTA) reversed the effects completely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号