共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrei Fluerasu Abdellatif Moussaïd Péter Falus Henri Gleyzolle Anders Madsen 《Journal of synchrotron radiation》2008,15(4):378-384
X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' ( q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q. 相似文献
2.
A. R. Sandy S. Narayanan M. Sprung J.‐D. Su K. Evans‐Lutterodt A. F. Isakovic A. Stein 《Journal of synchrotron radiation》2010,17(3):314-320
Moderate‐demagnification higher‐order silicon kinoform focusing lenses have been fabricated to facilitate small‐angle X‐ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one‐dimensional vertical X‐ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third‐generation storage‐ring light sources for small‐angle XPCS experiments. 相似文献
3.
I. Johnson Z. Sadygov O. Bunk A. Menzel F. Pfeiffer D. Renker 《Journal of synchrotron radiation》2009,16(1):105-109
X‐ray photon correlation spectroscopy (XPCS) provides an opportunity to study the dynamics of systems by measuring the temporal fluctuations in a far‐field diffraction pattern. A two‐dimensional detector system has been developed to investigate fluctuations in the frequency range of several Hz to kHz. The X‐ray detector system consists of a thin 100 µm scintillation crystal coupled to a Geiger‐mode avalanche photodiode array. In this article the elements of the system are detailed and the detector for XPCS measurements is demonstrated. 相似文献
4.
Karl Ludwig 《Journal of synchrotron radiation》2012,19(1):66-73
Successful X‐ray photon correlation spectroscopy studies often require that signals be optimized while minimizing power density in the sample to decrease radiation damage and, at free‐electron laser sources, thermal impact. This suggests exploration of scattering outside the Fraunhofer far‐field diffraction limit d2/λR, where d is the incident beam size, λ is the photon wavelength and R is the sample‐to‐detector distance. Here it is shown that, in an intermediate regime d2/λ > Rdξ/λ, where ξ is the structural correlation length in the material, the ensemble averages of the scattered intensity and of the structure factor are equal. Similarly, in the regime d2/λ > Rdξ(τ)/λ, where ξ(τ) is a time‐dependent dynamics length scale of interest, the ensemble‐averaged correlation functions g1(τ) and g2(τ) of the scattered electric field are also equal to their values in the far‐field limit. This broadens the parameter space for X‐ray photon correlation spectroscopy experiments, but detectors with smaller pixel size and variable focusing are required to more fully exploit the potential for such studies. 相似文献
5.
Luxi Li Paweł Kwaśniewski Davide Orsi Lutz Wiegart Luigi Cristofolini Chiara Caronna Andrei Fluerasu 《Journal of synchrotron radiation》2014,21(6):1288-1295
A new approach is proposed for measuring structural dynamics in materials from multi‐speckle scattering patterns obtained with partially coherent X‐rays. Coherent X‐ray scattering is already widely used at high‐brightness synchrotron lightsources to measure dynamics using X‐ray photon correlation spectroscopy, but in many situations this experimental approach based on recording long series of images (i.e. movies) is either not adequate or not practical. Following the development of visible‐light speckle visibility spectroscopy, the dynamic information is obtained instead by analyzing the photon statistics and calculating the speckle contrast in single scattering patterns. This quantity, also referred to as the speckle visibility, is determined by the properties of the partially coherent beam and other experimental parameters, as well as the internal motions in the sample (dynamics). As a case study, Brownian dynamics in a low‐density colloidal suspension is measured and an excellent agreement is found between correlation functions measured by X‐ray photon correlation spectroscopy and the decay in speckle visibility with integration time obtained from the analysis presented here. 相似文献
6.
Sub‐microsecond‐resolved multi‐speckle X‐ray photon correlation spectroscopy with a pixel array detector
下载免费PDF全文

Qingteng Zhang Eric M. Dufresne Suresh Narayanan Piotr Maj Anna Koziol Robert Szczygiel Pawel Grybos Mark Sutton Alec R. Sandy 《Journal of synchrotron radiation》2018,25(5):1408-1416
Small‐angle X‐ray photon correlation spectroscopy (XPCS) measurements spanning delay times from 826 ns to 52.8 s were performed using a photon‐counting pixel array detector with a dynamic range of 0–3 (2 bits). Fine resolution and a wide dynamic range of time scales was achieved by combining two modes of operation of the detector: (i) continuous mode, where data acquisition and data readout are performed in parallel with a frame acquisition time of 19.36 µs, and (ii) burst mode, where 12 frames are acquired with frame integration times of either 2.56 µs frame?1 or 826 ns frame?1 followed by 3.49 ms or 1.16 ms, respectively, for readout. The applicability of the detector for performing multi‐speckle XPCS was demonstrated by measuring the Brownian dynamics of 10 nm‐radius gold and 57 nm‐radius silica colloids in water at room temperature. In addition, the capability of the detector to faithfully record one‐ and two‐photon counts was examined by comparing the statistical distribution of photon counts with expected probabilities from the negative binomial distribution. It was found that in burst mode the ratio of 2 s to 1 s is markedly smaller than predicted and that this is attributable to pixel‐response dead‐time. 相似文献
7.
Chung‐Jong Yu Hae Cheol Lee Chan Kim Wonsuk Cha Jerome Carnis Yoonhee Kim Do Young Noh Hyunjung Kim 《Journal of synchrotron radiation》2014,21(1):264-267
The coherent X‐ray scattering beamline at the 9C port of the upgraded Pohang Light Source (PLS‐II) at Pohang Accelerator Laboratory in Korea is introduced. This beamline provides X‐rays of 5–20 keV, and targets coherent X‐ray experiments such as coherent diffraction imaging and X‐ray photon correlation spectroscopy. The main parameters of the beamline are summarized, and some preliminary experimental results are described. 相似文献
8.
A. Kazimirov V. G. Kohn A. Snigirev I. Snigireva 《Journal of synchrotron radiation》2009,16(5):666-671
The spatial structure of a beam focused by a planar refractive lens and Bragg diffracted from perfect silicon crystals was experimentally studied at the focal plane using a knife‐edge scan and a high‐resolution CCD camera. The use of refractive lenses allowed for a detailed comparison with theory. It was shown that diffraction leads to broadening of the focused beam owing to the extinction effect and, for a sufficiently thin crystal, to the appearance of a second peak owing to reflection from the back surface. It was found that the spatial structure of the diffracted beam depends on whether the crystal diffracts strongly (dynamically) or weakly (kinematically). The results help to understand the physical origin of the diffracted intensity recorded in a typical microbeam diffraction experiment. 相似文献
9.
Inna Bukreeva Daniele Pelliccia Alessia Cedola Fernando Scarinci Mihaela Ilie Cinzia Giannini Liberato De Caro Stefano Lagomarsino 《Journal of synchrotron radiation》2010,17(1):61-68
The coupling and propagation of electromagnetic waves through planar X‐ray waveguides (WG) with vacuum gap and Si claddings are analyzed in detail, starting from the source and ending at the detector. The general case of linearly tapered WGs (i.e. with the entrance aperture different from the exit one) is considered. Different kinds of sources, i.e. synchrotron radiation and laboratory desk‐top sources, have been considered, with the former providing a fully coherent incoming beam and the latter partially coherent beams. It is demonstrated that useful information about the parameters of the WG can be derived, comparing experimental results with computer simulation based on analytical solutions of the Helmholtz equation which take into account the amplitude and phase matching between the standing waves created in front of the WG, and the resonance modes propagating into the WG. 相似文献
10.
Yuya Shinohara Naoko Yamamoto Hiroyuki Kishimoto Yoshiyuki Amemiya 《Journal of synchrotron radiation》2015,22(1):119-123
X‐ray photon correlation spectroscopy (XPCS) of swollen rubber containing spherical silica nanoparticles is reported. It is shown that irradiation by intense X‐rays leads to the breakdown of cross‐links, thereby inducing the local rearrangement of silica nanoparticles. This rearrangement process depends on the cross‐link density and is characterized by a compressed exponential relaxation with aging behaviour, which resembles a common feature of complex fluids observed with XPCS. 相似文献
11.
Wonsuk Cha Wenjun Liu Ross Harder Ruqing Xu Paul H. Fuoss Stephan O. Hruszkewycz 《Journal of synchrotron radiation》2016,23(5):1241-1244
A method is presented to simplify Bragg coherent X‐ray diffraction imaging studies of complex heterogeneous crystalline materials with a two‐stage screening/imaging process that utilizes polychromatic and monochromatic coherent X‐rays and is compatible with in situ sample environments. Coherent white‐beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three‐dimensional reciprocal‐space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load. 相似文献
12.
Jean‐Louis Hazemann Olivier Proux Vivian Nassif Hervé Palancher Eric Lahera Cécile Da Silva Aurélien Braillard Denis Testemale Marie‐Ange Diot Isabelle Alliot William Del Net Alain Manceau Frédéric Gélébart Marc Morand Quentin Dermigny Abhay Shukla 《Journal of synchrotron radiation》2009,16(2):283-292
A bent‐crystal spectrometer based on the Rowland circle geometry has been installed and tested on the BM30b/FAME beamline at the European Synchrotron Radiation Facility to improve its performances. The energy resolution of the spectrometer allows different kinds of measurements to be performed, including X‐ray absorption spectroscopy, resonant inelastic X‐ray scattering and X‐ray Raman scattering experiments. The simplicity of the experimental device makes it easily implemented on a classical X‐ray absorption beamline. This improvement in the fluorescence detection is of particular importance when the probed element is embedded in a complex and/or heavy matrix, for example in environmental sciences. 相似文献
13.
Martin Bech Oliver Bunk Christian David Ronald Ruth Jeff Rifkin Rod Loewen Robert Feidenhans'l Franz Pfeiffer 《Journal of synchrotron radiation》2009,16(1):43-47
The first imaging results obtained from a small‐size synchrotron are reported. The newly developed Compact Light Source produces inverse Compton X‐rays at the intersection point of the counter propagating laser and electron beam. The small size of the intersection point gives a highly coherent cone beam with a few milliradian angular divergence and a few percent energy spread. These specifications make the Compact Light Source ideal for a recently developed grating‐based differential phase‐contrast imaging method. 相似文献
14.
Fabian Westermeier Tina Autenrieth Christian Gutt Olaf Leupold Agnes Duri Andreas Menzel Ian Johnson Christian Broennimann Gerhard Grübel 《Journal of synchrotron radiation》2009,16(5):687-689
The first X‐ray photon correlation spectroscopy experiments using the fast single‐photon‐counting detector PILATUS (Paul Scherrer Institut, Switzerland) have been performed. The short readout time of this detector permits access to intensity autocorrelation functions describing dynamics in the millisecond range that are difficult to access with charge‐coupled device detectors with typical readout times of several seconds. Showing no readout noise the PILATUS detector enables measurements of samples that either display fast dynamics or possess only low scattering power with an unprecedented signal‐to‐noise ratio. 相似文献
15.
Cinthia Piamonteze Uwe Flechsig Stefano Rusponi Jan Dreiser Jakoba Heidler Marcus Schmidt Reto Wetter Marco Calvi Thomas Schmidt Helena Pruchova Juraj Krempasky Christoph Quitmann Harald Brune Frithjof Nolting 《Journal of synchrotron radiation》2012,19(5):661-674
X‐Treme is a soft X‐ray beamline recently built in the Swiss Light Source at the Paul Scherrer Institut in collaboration with École Polytechnique Fédérale de Lausanne. The beamline is dedicated to polarization‐dependent X‐ray absorption spectroscopy at high magnetic fields and low temperature. The source is an elliptically polarizing undulator. The end‐station has a superconducting 7 T–2 T vector magnet, with sample temperature down to 2 K and is equipped with an in situ sample preparation system for surface science. The beamline commissioning measurements, which show a resolving power of 8000 and a maximum flux at the sample of 4.7 × 1012 photons s?1, are presented. Scientific examples showing X‐ray magnetic circular and X‐ray magnetic linear dichroism measurements are also presented. 相似文献
16.
Roberto Verbeni Tuomas Pylkk?nen Simo Huotari Laura Simonelli Gy?rgy Vankó Keith Martel Christian Henriquet Giulio Monaco 《Journal of synchrotron radiation》2009,16(4):469-476
A multiple‐analyser‐crystal spectrometer for non‐resonant inelastic X‐ray scattering spectroscopy installed at beamline ID16 of the European Synchrotron Radiation Facility is presented. Nine analyser crystals with bending radii R = 1 m measure spectra for five different momentum transfer values simultaneously. Using a two‐dimensional detector, the spectra given by all analysers can be treated individually. The spectrometer is based on a Rowland circle design with fixed Bragg angles of about 88°. The energy resolution can be chosen between 30–2000 meV with typical incident‐photon energies of 6–13 keV. The spectrometer is optimized for studies of valence and core electron excitations resolving both energy and momentum transfer. 相似文献
17.
M. I. Mazuritskiy 《Journal of synchrotron radiation》2012,19(1):129-131
Here, soft X‐ray synchrotron radiation transmitted through microchannel plates is studied experimentally. Fine structures of reflection and XANES Si L‐edge spectra detected on the exit of silicon glass microcapillary structures under conditions of total X‐ray reflection are presented and analyzed. The phenomenon of the interaction of channeling radiation with unoccupied electronic states and propagation of X‐ray fluorescence excited in the microchannels is revealed. Investigations of the interaction of monochromatic radiation with the inner‐shell capillary surface and propagation of fluorescence radiation through hollow glass capillary waveguides contribute to the development of novel X‐ray focusing devices in the future. 相似文献
18.
S. Bratos J.‐Cl. Leicknam M. Wulff D. Khakhulin 《Journal of synchrotron radiation》2014,21(1):177-182
X‐ray scattering from a liquid using the spectrum from the undulator fundamental is examined as a function of the bandwidth of the spectrum. The synchrotron‐generated X‐ray spectrum from an undulator is `pink', i.e. quasi‐monochromatic but having a saw‐tooth‐shaped spectrum with a bandwidth from 1 to 15%. It is shown that features in S(q) are slightly shifted and dampened compared with strictly monochromatic data. In return, the gain in intensity is 250–500 which makes pink beams very important for time‐resolved experiments. The undulator spectrum is described by a single exponential with a low‐energy tail. The tail shifts features in the scattering function towards high angles and generates a small reduction in amplitude. The theoretical conclusions are compared with experiments. The r‐resolved Fourier transformed signals are discussed next. Passing from q‐ to r‐space requires a sin‐Fourier transform. The Warren convergence factor is introduced in this calculation to suppress oscillatory artifacts from the finite qM in the data. It is shown that the deformation of r‐resolved signals from the pink spectrum is small compared with that due to the Warren factor. The q‐resolved and the r‐resolved pink signals thus behave very differently. 相似文献
19.
In the past seven years the size of the known protein sequence universe has been rapidly expanding. At present, more then five million entries are included in the UniProtKB/TrEMBL protein database. In this context, a retrospective evaluation of recent X‐ray absorption studies is undertaken to assess its potential role in metalloproteomics. Metalloproteomics is the structural and functional characterization of metal‐binding proteins. This is a new area of active research which has particular relevance to biology and for which X‐ray absorption spectroscopy is ideally suited. In the last three years, biological X‐ray absorption spectroscopy (BioXAS) has been included among the techniques used in post‐genomics initiatives for metalloprotein characterization. The emphasis of this review is on the progress in BioXAS that has emerged from recent meetings in 2007–2008. Developments required to enable BioXAS studies to better contribute to metalloproteomics throughput are also discussed. Overall, this paper suggests that X‐ray absorption spectroscopy could have a higher impact on metalloproteomics, contributing significantly to the understanding of metal site structures and of reaction mechanisms for metalloproteins. 相似文献
20.
Brownian and advective dynamics in microflow studied by coherent X‐ray scattering experiments
下载免费PDF全文

Raphael Urbani Fabian Westermeier Benjamin Banusch Michael Sprung Thomas Pfohl 《Journal of synchrotron radiation》2016,23(6):1401-1408
Combining microfluidics with coherent X‐ray illumination offers the possibility to not only measure the structure but also the dynamics of flowing samples in a single‐scattering experiment. Here, the power of this combination is demonstrated by studying the advective and Brownian dynamics of colloidal suspensions in microflow of different geometries. Using an experimental setup with a fast two‐dimensional detector and performing X‐ray correlation spectroscopy by calculating two‐dimensional maps of the intensity auto‐correlation functions, it was possible to evaluate the sample structure and furthermore to characterize the detailed flow behavior, including flow geometry, main flow directions, advective flow velocities and diffusive dynamics. By scanning a microfocused X‐ray beam over a microfluidic device, the anisotropic auto‐correlation functions of driven colloidal suspensions in straight, curved and constricted microchannels were mapped with the spatial resolution of the X‐ray beam. This method has not only a huge potential for studying flow patterns in complex fluids but also to generally characterize anisotropic dynamics in materials. 相似文献