首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
高文斌  沈玉其  J. H?GER  W. KRIEGER 《物理学报》1985,34(10):1261-1269
本文中用激光诱导荧光法首次研究了有机分子CH2Cl2分子的振动能量转移。实验测得了CH2Cl2分子的ν3和ν39振动模的激活和消激活速率常数,以及稀有气体分子对CH2Cl2分子的ν39振动模消激活的影响。用SSH理论计算了CH2Cl2-稀有气体碰撞,CH2Cl2分子ν39的V-T能量转移相对几率,分析讨论了CH2Cl2分子的振动能量转移的通道。 关键词:  相似文献   

2.
The complex dielectric permittivity ?(ω) of [N(CH3)4]2CoCl4 and [N(CH3)4]2ZnCl4 along the a-axis was measured between 0.35 MHz and 100 MHz. It has been found that for both substances the relaxation frequencies are about 5 MHz at Tc. The dielectric relaxation of both substances could be described by a polydispersive process β = 0.74 in the vicinity of Tc. However, for the temperature region of (T?Tc) > 0.6 for [N(CH3)4]2CoCl4 the dielectric absorption seems to be rather monodispersive.  相似文献   

3.
The molecular susceptibility and paramagnetic shift of [N(CH3)4]2CoCl4 single crystals were measured, and from these experimental results we obtained the transferred hyperfine interaction, Hhf, due to the transfer of spin density from Co2+ ions to [N(CH3)4]+ ions. The transferred hyperfine interaction can be expressed as a linear equation, with Hhf increasing with increasing temperature. The remarkable change in Hhf near Tc5 (=192 K) corresponds to a phase transition. The proton spin-lattice relaxation times of [N(CH3)4]2CoCl4 single crystals were also investigated, and it was found that the relaxation process can be described by a single exponential function. The variation of the relaxation time with temperature undergoes a remarkable change near Tc5, confirming the presence of a phase transition at that temperature. From the above results, we conclude that the increase in Hhf with increasing temperature is large enough to allow the transfer of spin density between Co2+ ions and the nuclear spins of the nonmagnetic [N(CH3)4]+ ions in the lattice, and thus the increase in the relaxation time with temperature is attributed to an increase in the transferred hyperfine field.  相似文献   

4.
As part of the simultaneous analysis of line positions and intensities of the first two polyads of monodeuterated methane, the results achieved for the region 3-5 μm are reported. It involves the three highest fundamentals, (ν1, ν2, ν4), overlapped by overtone (2ν3, 2ν5, 2ν6) and combination (ν36, ν35, ν56) bands. The theoretical model was based on the global tensorial model implemented in the MIRS package. Some 10 000 line positions and 2400 line intensities have been modeled to ±0.000 88 cm−1 and ±3.6% respectively, using measurements obtained at 0.0056 and 0.011 cm−1 resolution with the Fourier transform spectrometer at National Solar Observatory located at Kitt Peak. The strongest band in this polyad is ν4(E) at 3016.7 cm−1 with a strength of 6.3×10−18 cm−1/(molecule cm−2) at 296 K; the weakest band is 2ν3(E) at 2597.7 cm−1 with a strength of 1.9×10−20 cm−1/(molecule cm−2) at 296 K. The total calculated absorption arising from the CH3D nonad is 8.95×10−18 cm−1/(molecule cm−2) at 296 K.  相似文献   

5.
Relative and absolute line intensities for the ν3 bands of the 12C and 13C isotopic varieties of methane have been measured using a tunable difference-frequency laser spectrometer. From these data the integrated band strength of 13CH4 is calculated to be 0.983 ± 0.007 that of 12CH4, with the uncertainty representing three standard deviations. The absolute ν3 bandstrength for 12CH4 is 266.1 ± 3.0 cm?2 atm ?1 at 294.7 K where the errors are dominated by the pressure measurement. This band strength corresponds to an effective transition moment 〈μ3〉 = 0.0534(3)D for 12CH4 from which the ν4 band dipole moment and the Herman-Wallis F factor can be estimated using a recent force field model for methane.  相似文献   

6.
The spin-lattice relaxation times, T1, of protons in o, m, p-phenylene-diamine dihydrochlorides C6H4(NH2)2·2HCl, phenylhydrazinium chloride C6H5NHNH3Cl, hexaethylbenzene C6(CH2CH3)6, tetrabutylammonium bromide [CH3(CH2)3]4NBr, iodide [CH3(CH2)3]4NI, tetraheptylammonium bromide [CH3(CH2)6]4NBr and iodide [CH3(CH2)6]4NI powders have been measured between 400 and 100 K at 60MHz. The experimental results have been explained by considering the reorientational motions of ?NH3+ and ?CH3 groups about C3 axes and their role of behaving as sinks to rapid spin diffusion of the ring protons of the phenylene and the methylene protons. The observed T1, minima in all these substances turn out to be the measures of the ratios between the total number of protons and the number of reorienting ?NH3+ or ?CH3 protons. Therefore it has been concluded that the T1, minima of ?NH3+ and ?CH3 groups, when obtainable can indicate their number present in a solid sample.  相似文献   

7.
Middle infrared absorption, Raman scattering and proton magnetic resonance relaxation measurements were performed for [Zn(NH3)4](BF4) in order to establish relationship between the observed phase transitions and reorientational motions of the NH3 ligands and BF4 anions. The temperature dependence of spin-lattice relaxation time (T1(1H)) and of the full width at half maximum (FWHM) of the bands connected with ρr(NH3), ν2(BF4) and ν4(BF4) modes in the infrared and in the Raman spectra have shown that in the high temperature phase of [Zn(NH3)4](BF4)2 all molecular groups perform the following stochastic reorientational motions: fast (τR≈10−12 s) 120° flips of NH3 ligands about three-fold axis, fast isotropic reorientation of BF4 anions and slow (τR≈10−4 s) isotropic reorientation (“tumbling”) of the whole [Zn(NH3)4]2+ cation. Mean values of the activation energies for uniaxial reorientation of NH3 and isotropic reorientation of BF4 at phases I and II are ca. 3 kJ mol−1 and ca. 5 kJ mol−1, respectively. At phases III and IV the activation energies values for uniaxial reorientation of both NH3 and of BF4 equal to ca. 7 kJ mol−1. Nearly the same values of the activation energies, as well as of the reorientational correlation times, at phases III and IV well explain existence of the coupling between reorientational motions of NH3 and BF4. Splitting some of the infrared bands at TC2=117 K suggests reducing of crystal symmetry at this phase transition. Sudden narrowing of the bands connected with ν2(BF4), ν4(BF4) and ρr(NH3) modes at TC3=101 K implies slowing down (τR?10−10 s) of the fast uniaxial reorientational motions of the BF4 anions and NH3 ligands at this phase transition.  相似文献   

8.
Using the optic-acoustic effect, measurements of the relaxation time were made after exciting the v4 mode of CD4. This was done for pure CD4 and for mixtures of CD4 with He, Ne, Ar and Kr, the results being 3.9±0.2, 1.8±0.2, 18±2, 70±15 and ? 100 μs at 1 atm, respectively. From the relaxation time dependence on mass as well as from a comparison between results for CH4 and CD4 it is concluded that energy transfer takes place via a vibration-rotation-translation (V-R-T) mechanism.Experiments were also conducted to study the most probable deexcitation path from the higher energy mode, v3, to translation. This was done for CD4-CD4 as well as for CD4-atom collisions. For pure CD4 deexcitation occurs via the lower energy group (v2, v4), while for CD4 mixtures it may also occur via the higher energy group (v1, 2v2, v2 + v4, 2v4).  相似文献   

9.
Gamma irradiated [(CH3)4N]InCl4 and [(CH3)4N]2CdCl4 single crystals were investigated by electron paramagnetic resonance at ambient temperature, and it has been found that both compounds indicate the existence of (CH3)3N+ radicals. The g factors were found to be isotropic, and the hyperfine constant for H atoms was measured as 2.86 mT and is isotropic for this radical in these substances. The hyperfine coupling constant of the N nucleus with the hole in (CH3)3N+ in [(CH3)4N]InCl4 was found to be anisotropic with the Azz=2.92, Ayy=1.62 and Axx=1.40 mT. From these, it has been revealed that the C3v-axis of (CH3)3N+ radical performs rotational or jumping reorientational motions around a fixed axis, in addition to the rotations of protons in CH3 groups and the rotational motions of CH3 groups around the C3v-axis of the radical. The g, and the hyperfine coupling factors of the N nucleus were isotropic in (CH3)3N+ in [(CH3)4N]2CdCl4. This indicates the motional behaviour of the radical in this compound is as in a liquid. This isotropic behaviour of the hyperfine coupling constants was found to be same until the attainable lowest temperature of 113 K in our laboratory.  相似文献   

10.
The electronic (UV‐vis) and resonance Raman (RR) spectra of a series of para‐substituted trans‐β‐nitrostyrenes were investigated to determine the influence of the electron donating properties of the substituent (X = H, NO2, COOH, Cl, OCH3, OH, N(CH3)2, and O) on the extent of the charge transfer to the electron‐withdrawing NO2 group directly linked to the ethylenic (C = C) unit. The Raman spectra and quantum chemical calculations show clearly the correlation of the electron donating power of the X group with the wavenumbers of the νs(NO2) and ν (C = C)sty normal modes. In conditions of resonance with the lowest excited electronic state, one observes for X = OH and N(CH3)2 that the symmetric stretching of the NO2, νs(NO2), is the most substantially enhanced mode, whereas for X = O, the chromophore is extended over the whole molecule, with substantial enhancement of several carbon backbone modes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The proton spin-lattice relaxation rates in [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals grown using the slow evaporation method were investigated over the temperature range 120-400 K. It was found that the relaxation processes of 1H for all the [N(CH3)4]2BCl4 crystals can be described with single exponential functions. The changes in the 1H relaxation behavior in the neighborhood of the phase transition temperatures are used to detect changes in the state of internal motion. From the 1H spin-lattice relaxation rate measurements for [N(CH3)4]2BCl4 crystals, the activation energies were calculated for each phase. The large values of the activation energies indicate that the N(CH3)4 groups are significantly affected during the transitions. Although these [N(CH3)4]2BCl4 crystals all belong to the group of A2BX4-type crystals, their 1H spin-lattice relaxation rates have different temperature dependences and indicate the occurrence of different molecular motions within the crystals. We additionally show for the first time that the differences in 1H spin-lattice relaxation rates among the [N(CH3)4]2BCl4 (B=59Co, 63Cu, 67Zn, and 113Cd) single crystals arise from differences in the electron structures of the metal ions within the series.  相似文献   

12.
Angle and velocity distributions for supersonic chopped beams of N2 and CH4 scattered from clean close-packed Pt(111) surfaces are reported. For specular direct-inelastic scattering N2 and CH4 velocity distributions can be characterized by empirical relationships used for Ar scattering. For instance, for specular scattering the following relation is found for Ar, N2 and CH4: 〈KEf〉 = A(KEi) + B(2kTs), where 〈KEf〉 is the average final kinetic energy, KEi is the incident kinetic energy and Ts is the surface temperature. The beam and surface temperature independent coefficients A and B are, respectively: Ar 0.87, 0.17; N2 0.79, 0.19 and CH4 0.84, 0.25. Unlike Ar, N2 desorbs from Pt with a Maxwell-Boltzmann velocity distribution near the surface temperature. Qualitatively the trapping probabilities for these molecules on Pt(111) are ordered: Xe > N2 > CH4> Ar.  相似文献   

13.
The linear birefringence (LB) of the antiferromagnet (CH2)2(ND3)2MnCl4 has been measured as a function of temperature and in magnetic fields up to 100 kOe. The temperature dependence of the LB points to a pronounced two dimensional magnetic behaviour. No anomaly corresponding to the effect of three dimensional ordering could be detected at TN. In theffield dependent measurements the spin flop at HSF = 33.6 ± 1 kOe (T = 4K) could clearly be detected.  相似文献   

14.
Proton spin-lattice relaxation rate has been measured at room temperature in the impurity-doped (CH3)4NMn(1-x)CuxCl3 for X = 0.04, 0.1 and 0.17. The result for Hz. snfc;chain-axis as a function of resonance frequency clearly shows that the spectral density of the spin fluctuations in the impure system remains to have the characteristics 1-D diffusive term (ω-12), with a slower rate of the spin diffusion in accordance with the theory by Richards. The result for H⊥ chain-axis indicates, however, the existence of a singularity of the fluctuations near ω = 0.  相似文献   

15.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives rms = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

16.
We propose explanations for three laser lines observed in CH3I by Dyubko, Svich and Fesenko. Two lines are respectively assigned to (J = 16, K = 6) → (J = 15, K = 6) and (J = 45, K = 6) → (J = 44, K = 6) in the ν6 = 1 state. Th e third one might be explained as (ν3 = 2, J = 54, K) → (ν3 = 2, J = 53, K).  相似文献   

17.
The bending vibration-rotation band ν4 of DCCF was studied. The measurements were carried out with a Fourier spectrometer at a resolution of about 0.03 cm?1. The constants B0=0.29141(1)cm?1, α4=?5.02(2)×10?4cm?1, q4=4.52(3)×10?4cm?1, and D0=9.2(4)×10?8cm?1 were derived. The rotational analysis of the “hot” bands 2ν4(Δ) ← ν4(II) and 2ν4+) ← ν4(II) was performed. In addition, the “hot” bands ν4 + ν5 ← ν5 were assigned. A set of vibrational constants involved was derived.  相似文献   

18.
The cross sections for e+e? → e+(μ+ + non showering track + any photons have been measured for cm energies between 3.1 GeV and 5.2 GeV. We observe τ-pair production below the thresholdfor charm production and determine the τ mass to be 1.807 ± 0.020 GeV from a fit to the energy dependence of the cross section. The ration of the leptonic branching ratios Bμ/Be = 0.92 ± 0.32 is consistent with eμ-universality. The following branching ratios are determined for a V-A coupling: B(τ → ντeν) = B(τ → ντμν) = 0.182 + 0.028. B(τντ + charged hadron + any photons) = 0.29 ± 0.11, B(τντ + three or more charged hadrons + any photons) = 0.35 ± 0.11.  相似文献   

19.
20.
Rovibrational transitions between vibrationally excited states of 12CH4 in the 3.4 μm wavelength region are investigated by a pump-probe technique using an optical parametric oscillator as a pump and a tunable diode laser as a probe. Methane molecules are excited into selected levels of the 2ν3 state of the tetradecad and numerous transitions between pentad and tetradecad, and between tetradecad and triacontad, have been observed in this spectral range. Positions and assignments of transitions involving a level of the 2ν3 (F2) substate are reported. Reliable energy values for 2ν3 (F2) levels up to J = 6 are obtained, and the energies and assignments of a number of 3ν3 levels have been deduced allowing identification of IR lines in the 1.1 μm region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号