首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The use of pyridine‐2,4‐dicarboxylic acid (H2pydc) in the construction of SrII and SrII‐MII (M=Co, Ni, Zn and Cu) coordination polymers is reported. Eight complexes, that is, [Sr(pydc)H2O]n ( 1 ), [MSr(pydc)2(H2O)2]n (M=Co ( 2 ), Ni ( 3 ), Zn ( 4 )), [ZnSr(pydc)2(H2O)7]n?4 nH2O ( 5 ), [SrCu(pydc)2]n ( 6 ), [SrCu(pydc)2(H2O)3]n?2 nH2O ( 7 ), and [Cu3Sr2(pydc)4(Hpydc)2(H2O)2]n ( 8 ), have been synthesized via dexterously choosing the appropriate strontium sources and transition metal salts, and rationally controlling the temperature of the reaction systems. Complexes 1 , 2 ( 3 , 4 ), 6 , and 8 display four types of 3‐D framework structures. Complexes 5 and 7 exhibit a 2‐D network and a 1‐D chain structure, respectively. The 2‐D complex 7 can be reversibly transformed into 3‐D compound 6 through temperature‐induced solvent‐mediated structural transformation. The luminescent property studies indicated that complex 1 shows a strong purple luminescent emission and 4 exhibits a strong violet luminescence emission. The magnetic properties of 2 , 3 , and 8 were also studied. Antiferromagnetic MII???MII interactions were determined for these complexes.  相似文献   

2.
Two metal–organic coordination polymers based on a salt, (pydcH)3·(pipzH2)1.5·(H2O)3.7, between pyridine-2,6-dicarboxylic acid, pydcH2, and piperazine, pipz, formulated as (pipzH2)[Sr(pydc)2(H2O)2]n·4H2O and [Ce(pydc)2(H2O)2]n·4H2O were prepared. The synthesis, IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, supramolecular synthons, and potentiometric measurements were investigated. The chemical environment around each Sr(II) or Ce(IV) was a distorted tricapped trigonal prism. The butterfly- and ladder-like structures of these complexes were bridged by oxygens of (pydc)2– and M–O(pydc)–M bonds. In the crystal structure, intermolecular O–H?O, N–H?O, and C–H?O hydrogen bonds result in the formation of supramolecular structures. The stoichiometry and stability of the pydc–pipz system with Sr(II) in aqueous solution were investigated by potentiometric titration. The stoichiometry of complex species in solution was found to be similar to the cited crystalline metal ion complexes.  相似文献   

3.
Two new coordination polymers, {[Cd2(btc)(2,2′‐bpy)2] · H2O}n ( 1 ) and [Zn2(btc)(2,2′‐bpy)(H2O)]n ( 2 ) (H4btc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine), were synthesized hydrothermally under similar conditions and characterized by elemental analysis, IR spectra, TGA, and single‐crystal X‐ray diffraction analysis. In complexes 1 and 2 , the (btc)4– ligand acts as connectors to link metal ions to give a 2D bilayer network of 1 and a 3D metal‐organic framework of 2 , respectively. The differences in the structures are induced by diverging coordination modes of the (btc)4– ligand, which can be attributed to the difference metal ions in sizes. The results indicate that metal ions have significant effects on the formation and structures of the final complexes. Additionally, the fluorescent properties of the two complexes were also studied in the solid state at room temperature.  相似文献   

4.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

5.
Three new one‐dimensional (1D) chain metal–nitroxide complexes {[Cu(NIT4Py)2(suc)(H2O)] · 3H2O}n ( 1 ), {[Cd(NIT4Py)2(suc)(H2O)] · [Cd(NIT4Py)2(suc)(H2O)2] · 3H2O}n ( 2 ), and {[Zn(NIT4Py)(glu)(H2O)] · H2O}n ( 3 ) [NIT4Py = 2‐(4′‐pyridyl)‐4, 4, 5, 5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, suc = succinate anion and glu = glutarate anion] were synthesized and structurally characterized. Single‐crystal X‐ray analyses indicate that the three complexes crystallize in neutral 1D chains in which the metal‐nitroxide units are linked by flexible dicarboxylate anions. The succinate anions only adopt trans configuration in complexes 1 and 2 , whereas the glutarate anion has gauche/anti conformation in complex 3 . Magnetic measurements show that complex 1 exhibits weak antiferromagnetic interactions between the copper ions and the nitroxides.  相似文献   

6.
The coordination polymers (CPs), [Ni(L)(H2O)4]n ( 1 ), [Co(HL)2(H2O)2]n ( 2 ), {[Cu(L)(H2O)3] · H2O}n ( 3 ), [Mn(L)(H2O)2]n ( 4 ), [Cd(L)(H2O)2]n ( 5 ), and {[Zn2(L)2] · H2O}n ( 6 ), were solvothermally synthesized by employing the imidazol‐carboxyl bifunctional ligand 4‐(1H‐imidazol‐1‐yl) phthalic acid (H2L). Single‐crystal X‐ray diffraction indicated that the L2–/HL ligands display various coordination modes with different metal ions in 1 – 6 . Complexes 1 and 2 show one‐dimensional (1D) chain structures, whereas complexes 3 – 6 show 2D layered structures. The magnetic properties of these complexes were investigated. Complexes 1 and 3 indicate weak ferromagnetic interactions, whereas complexes 2 and 4 demonstrate antiferromagnetic interactions. In addition, luminescence properties of 5 and 6 were measured and studied in detail.  相似文献   

7.
The coordination polymers [Zn2(NDA)(HNDA)2(IPT)2]n ( 1 ) and [Mn(NDA)(IPT)]n ( 2 ) [H2NDA = naphthalene‐1,4‐dicarboxylic acid and IPT = 4′‐(4‐(1H‐imidazol‐1‐yl)phenyl)‐4,2′:6′,4′′‐terpyridine] were synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction. Complex 1 features a one‐dimensional ladder‐like chain, whereas complex 2 shows a three‐dimensional CdS topology. The different coordination modes for organic ligands and topological nets for complexes 1 and 2 are mainly related with the metal ions.  相似文献   

8.
Four metal‐organic coordination polymers [Cd(4‐bpcb)1.5Cl2(H2O)] ( 1 ), [Cd(4‐bpcb)0.5(mip)(H2O)2] · 3H2O ( 2 ), [Co(4‐bpcb)(oba)(H2O)2] ( 3 ), and [Ni(4‐bpcb)(oba)(H2O)2] ( 4 ) [4‐bpcb = N,N′‐bis(4‐pyridinecarboxamide)‐1, 4‐benzene, H2mip = 5‐methylisophthalic acid, and H2oba = 4, 4′‐oxybis(benzoic acid)] were synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, elemental analyses, IR spectroscopy, powder X‐ray diffraction, and TG analysis. In complex 1 , two Cl anions serve as bridges to connect two Cd‐(μ1‐4‐bpcb) subunits forming a dinuclear unit, which are further linked by μ2‐bridging 4‐bpcb to generate 1D zigzag chain. Complex 2 shows a 2D 63 network constructed by [Cd‐mip]n zigzag chains and μ2‐bridging 4‐bpcb ligands. Complexes 3 and 4 are isostructural 2D (4, 4) grid networks derived from [M‐oba]n (M = Co, Ni) zigzag chains and [M‐(4‐bpcb)]n linear chains. The 1D chains for 1 and the 2D networks for 2 – 4 are finally extended into 3D supramolecular architectures by hydrogen bonding interactions. The roles of dicarboxylates and central metal ions on the assembly and structures of the target compounds were discussed. Moreover, the thermal stabilities, photoluminescent properties, and photocatalytic activities of complexes 1 – 4 and the electrochemical properties of complexes 3 and 4 were investigated.  相似文献   

9.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules.  相似文献   

10.
Three Htrz‐based metal complexes, [Cd(trz)(CH3OH)(nb)]n ( 1 ), [Cd(Htrz)(H2O)(nb)2]n ( 2 ), and {[Mn(Htrz)2(H2O)4] · 2nb} ( 3 ) (Htrz = 1,2,4‐triazole, Hnb = 4‐nitrobenzoic acid), have been synthesized by diffusion or solvent evaporation method and structurally characterized by single crystal X‐ray crystallography, elemental analysis, IR and fluorescence spectroscopy, and TG‐DTA. Structural determinations revealed that complex 1 has a two‐dimensional (2D) layer structure constructed by tridentate μN1,N2,N4‐bridging trz anions and CdII ions. Complex 2 presents a 1D polymeric chain structure bridged by bidentate μN1,N4‐bridging Htrz molecule and CdII ions, whereas compound 3 is a supramolecular assembly containing a mononuclear [Mn(Htrz)2(H2O)4]2+ dication and two free nb anions for charge compensation. Thus, the structural diversity of the three complexes is significantly governed by the coordination modes of the neutral/deprontated Htrz ligand, rather than the terminal/lattice nb anion. Additionally, the thermal stability of the complexes is observed to be dependent on the polymeric or discrete structure nature. At room temperature, the three solid complexes show Htrz‐based intraligand fluorescent emission.  相似文献   

11.
Three 1H‐benzimidazole‐5‐carboxylate (Hbic)‐based coordination polymers, {[Ni(H2O)(Hbic)2] · 2H2O}n ( 1 ), {[Ni(H2O)2(Hbic)2] · 3H2O}n ( 2 ), and {[Co2(H2O)4(Hbic)4] · 4DMF · 3H2O}n ( 3 ) were obtained by reactions of the ligand H2bic and NiII or CoII salts in the presence of different structure directing molecules. They were structurally characterized by single‐crystal X‐ray diffraction, IR spectra, elemental analysis, thermal stability, luminescent, and magnetic measurements. Structural analysis suggests that the three polymers exhibit a 2D (4, 4) layer for 1 and 1D linear double chains for both 2 and 3 due to the variable binding modes and the specific spatial orientation of the Hbic ligand towards the different paramagnetic metal ions, which were further aggregated into different 3D supramolecular architectures by popular hydrogen‐bonding interactions. Weak and comparable antiferromagnetic couplings mediating by Hbic bridge are observed between the neighboring spin carriers for 2 and 3 , respectively. Additionally, complexes 1 – 3 also display different luminescence emissions at room temperature due to the ligand‐to‐metal charge transfer.  相似文献   

12.
Two 3D Ln(III)–Cu(II) coordination polymers [Er2Cu3(pydc)6(H2O)6]n (1) and [Tb2Cu3(pydc)6(H2O)6]n (2) were hydrothermally prepared from pyridine-2,4-dicarboxylic acid (H2pydc) and characterized by single-crystal X-ray diffraction analysis. The magnetic studies show that an unexpected ferromagnetic interaction between metal centers exists in 1 while 2 behaves as an antiferromagnet.  相似文献   

13.
Three new metal–nitroxide complexes {[Ni(NIT4Py)2(obb)(H2O)2] · 1.5H2O}n ( 1 ), {[Co(NIT4Py)2(obb)(H2O)2] · 2H2O}n ( 2 ), and [Co(IM4Py)2(obb)2(H2O)2][Co(IM4Py)2(H2O)4] · 10H2O ( 3 ) with the V‐shaped 4,4′‐oxybis(benzoate) [NIT4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, IM4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxide, and obb = 4, 4′‐oxybis(benzoate) anion] were synthesized and structurally characterized. Single‐crystal X‐ray analyses indicate that complexes 1 and 2 crystallize in neutral one‐dimensional (1D) zigzag chains, in which the nitroxide–metal–nitroxide units are linked by the V‐shaped 4,4′‐oxybis(benzoate) anions, whereas complex 3 consists of isolated mononuclear [Co(IM4Py)2(obb)2(H2O)2]2– anions and [Co(IM4Py)2(H2O)4]2+ ions. Magnetic measurements show that complexes 1 and 2 both exhibit weak antiferromagnetic interactions between the metal ions and the nitroxides.  相似文献   

14.
4‐Hydroxypyridine‐2,6‐dicarboxylic acid (chelidamic acid, hypydc[H]H2) reacts with MnCl2·2H2O in the presence of piperazine in water to afford the title complex, {[Mn3(C7H2NO5)2(H2O)8]·3H2O}n or {[Mn3(hypydc)2(H2O)8]·3H2O}n. This compound is a one‐dimensional coordination polymer, with the twofold symmetric repeat unit containing three metal centres. Two different coordination geometries are observed for the two independent MnII metal centres, viz. a distorted pentagonal bipyramid and a distorted octahedron. The 4‐oxidopyridine‐2,6‐dicarboxylate anions and two of the water molecules act as bridging ligands. The zigzag‐like geometry of the coordination polymer is stabilized by hydrogen bonds. O—H...O and C—H...O hydrogen bonds and water clusters consolidate the three‐dimensional network structure.  相似文献   

15.
Three new complexes constructed by 1‐adamantaneacetic acid (HL), [Zn2L4]n ( 1 ), [MnL2(4,4′‐bipy)(H2O)2]n· 2n(HL) ( 2 ) and MnL2(2,2'‐bipy)(H2O)2 ( 3 ), have been hydrothermally synthesized. X‐ray single crystal diffraction analyses reveal that both 1 and 2 are infinite 1D chains along b axis. 2 and 3 have an octahedral coordination and show the supramolecular structures which are formed on the basis of the connectivity of intermolecular hydrogen bonds. The deprotonated L? ligands coordinate the M(II) atoms with many coordination modes in the title complexes.  相似文献   

16.
Abstract. Two metal‐organic coordination polymers [Co(bmb)(btc)0.5]n( 1 ) and {[Zn(bmb)0.5(btc)0.5(H2O)] · 0.5bmb · H2O}n ( 2 ) [H4btc = benzene‐1, 2, 4, 5‐tetracarboxylic acid, bmb = 1, 4‐bis(2‐methylbenzimidazol‐1‐ylmethyl) benzene] were prepared under hydrothermal conditions. Single‐crystal X‐ray diffraction indicates that both complexes have a 2D framework structure with (4 · 62) (42 · 62 · 82) topology. Interestingly, the hydrogen bonds in 2 form a fascinating meso‐helix. The catalytic activity of 1 for oxidative coupling of 2, 6‐dimethylphenol (DMP) and the photoluminescence properties of 2 were investigated. Furthermore, the complexes were investigated by IR spectroscopy and thermogravimetric analysis.  相似文献   

17.
The title complexes, hexaaquacobalt(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexaaquanickel(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octahedral geometries. Two [Bi(pydc)2] units (pydc is pyridine‐2,6‐dicarboxylate) are linked via bridging carboxylate groups into centrosymmetric [Bi2(pydc)4]2− dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2− anions and solvent water molecules form multiple hydrogen bonds to generate a supramolecular three‐dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2− dimers provides an additional supramolecular synthon that directs and facilitates the crystal packing of both (I) and (II).  相似文献   

18.
The preparation of coordination polymers (CPs) based on either transition metal centres or rare‐earth cations has grown considerably in recent decades. The different coordination chemistry of these metals allied to the use of a large variety of organic linkers has led to an amazing structural diversity. Most of these compounds are based on carboxylic acids or nitrogen‐containing ligands. More recently, a wide range of molecules containing phosphonic acid groups have been reported. For the particular case of Ca2+‐based CPs, some interesting functional materials have been reported. A novel one‐dimensional Ca2+‐based coordination polymer with a new organic linker, namely poly[[diaqua[μ4‐(4,5‐dicyano‐1,2‐phenylene)bis(phosphonato)][μ3‐(4,5‐dicyano‐1,2‐phenylene)bis(phosphonato)]dicalcium(II)] tetrahydrate], {[Ca2(C8H4N2O6P2)2(H2O)2]·4H2O}n, has been prepared at ambient temperature. The crystal structure features one‐dimensional ladder‐like 1[Ca2(H2cpp)2(H2O)2] polymers [H2cpp is (4,5‐dicyano‐1,2‐phenylene)bis(phosphonate)], which are created by two distinct coordination modes of the anionic H2cpp2− cyanophosphonate organic linkers: while one molecule is only bound to Ca2+ cations via the phosphonate groups, the other establishes an extra single connection via a cyano group. Ladders close pack with water molecules through an extensive network of strong and highly directional O—H…O and O—H…N hydrogen bonds; the observed donor–acceptor distances range from 2.499 (5) to 3.004 (6) Å and the interaction angles were found in the range 135–178°. One water molecule was found to be disordered over three distinct crystallographic positions. A detailed solution‐state NMR study of the organic linker is also provided.  相似文献   

19.
Four coordination polymers, namely, [Zn2(TIYM)(2,6‐PYDC)2]n · n(CH3OH) · 3n(H2O) ( 1 ), [Cu(TIYM)(2,6‐PYDC)]n · 3n(H2O) ( 2 ), [Co(TIYM)(2,6‐PYDC)]n · n(CH3OH) · 3n(H2O) ( 3 ), and [Cd2(TIYM)(2,6‐PYDC)2(H2O)]n · n(H2O) ( 4 ) with the flexible N‐containing ligand [tetrakis(imidazol‐1‐ylmethyl)methane (TIYM)] and the N‐containing dicarboxylic acid [2,6‐pyridinedicarboxylic acid (2,6‐PYDC)] were prepared. Compounds 1 – 4 show various structures because of different N–Ccenter–N angles (θ) of TIYM ligands and changing coordination modes of 2,6‐PYDC. Compounds 1 , 2 , and 3 display a similar 1D ladder‐like chain, whereas 4 gives a 1D quad‐core lifting platform shaped belt. The structural diversities in 1 – 4 suggest that the multiple coordination modes or the different freely twist angles of ligands and the presence of different metal atoms play important roles in the resulting structures of the coordination polymers. Furthermore, the solid‐state luminescence properties of 1 and 4 , and the magnetic properties of 3 were investigated.  相似文献   

20.
A metal-organic framework, [Co2(pydc)2(bpy)2] n · 2nH2O (1) (H2pydc = pyridine-3,4-dicarboxylic acid, bpy = 4,4′-bipyridine), was synthesized under hydrothermal conditions. X-ray diffraction experiments reveal that (1) exhibits a chiral 3D metal-organic framework, which represents the rare example of 3D chiral coordination polymers containing two kinds of organic ligands. Temperature-dependent magnetic susceptibility for (1) was also studied. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号