首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An externally driven light mode in a ring cavity may show multistable behaviour if linear losses and dispersive nonlinear coupling compete with each other. The paper considers the trilinear (sum frequency) system with two externally driven modes which shows bistability simultaneously in these two modes. It is described in a fully quantum manner. The master equation and the Fokker-Planck equation for the Glanmber-Sudarshan quasi-probalbility are deduced with appropriate consideration of fluctuations. A closed steady solution of the Fokker-Planck equation is given for one mode only under strong restrictive assumptions.  相似文献   

2.
Using the Glauber-SudarshanP-representation for the field modes and a quasi-distribution function recently presented for arbitrary quantum systems we derive an exact generalized Fokker-Planck equation for a multi-mode laser containing a set of multi-level atoms with homogeneous and inhomogeneous level broadening. By introduction of suitable collective atomic coordinates this generalized Fokker-Planck equation is reduced to an ordinary one which may serve as a basis for the adequate treatment of laser light statistics.  相似文献   

3.
The tagged particle BBGKY hierarchy is systematically expanded in inverse powers of the square root of the particle mass. In the Brownian limit, for fixed Knudsen number, the hierarchy reduces to the Brownian limit of the repeated ring equation which itself reduces to the Fokker-Planck equation. The friction coefficient of the Fokker-Planck equation is found to be a functional of the solution of Dorfman, van Beijeren, and McClure's extended Boltzmann equation for a fixed object in a flowing gas. As a consequence, the tagged particle diffusion coefficient calculated in the Brownian limit of the repeated ring equation is valid for all particle sizes.  相似文献   

4.
5.
The dynamics of the collective spin for Bose-Einstein condensates with nonlinear interactions, is studied within the framework of the two-component spinor. We discuss the spin resonance when the system is submitted to a periodically-modulated magnetic field at the zero temperature. In this case, the nonlinearity parameter controls the critical change between a localized and a homogeneous spin state. When the temperature is finite – or a random magnetic field is considered – the movement of the collective spin is governed by the Landau-Lifshitz-Gilbert equation, from which the complete Fokker-Planck equation is derived. This equation is the essential tool to describe the time-evolution of the probability distribution function for the collective spin. The functional integral approach is used to solve analytically examples of BEC spin behavior in a static magnetic field at finite temperature. We show how such a method can lead effectively to the complete solution of the Fokker-Planck equation for this kind of problems.  相似文献   

6.
The variance \(\sigma _{E_k }^2\) of the fission-fragment kinetic-energy distribution is calculated in describing the dynamics of fission of an excited nucleus by a Fokker-Planck equation for the quantum distribution function of two collective coordinates (the distance between the centers of mass of the nascent fragments and the neck parameter) and their conjugate momenta. In the calculations fluctuations in collective coordinates near scission and prescission kinetic energy have been taken into account simultaneously. The results of statistical model calculations for the case of high friction in fission mode and those of the calculations in the framework of a dynamical model for zero nuclear viscosity are the limiting cases of the proposed model. The dependence of \(\sigma _{E_k }^2\) upon the fissility parameter is studied.  相似文献   

7.
It is shown that, depending on the incident wave frequency and the system geometry, the extraordinary transmission of light through a metal film perforated by an array of subwavelength holes can be described by one of the three mechanisms: the “transparency window” in the metal, excitation of the Fabry–Perot resonance of a collective mode produced by the hybridization of evanescence modes of the holes and surface plasmons, and excitation of a plasmon on the rear boundary of the film. The excitation of a plasmon resonance on the front boundary of the metal film does not make any substantial contribution to the transmission coefficient, although introduces a contribution to the reflection coefficient.  相似文献   

8.
Starting from the tight-binding dielectric matrix in the random phase approximation we examine the collective modes and electron-hole excitations in a two-band electronic system. For long wavelengths (q → 0), for which most of the analysis is carried out, the properties of the collective modes are closely related to the symmetry of the atomic orbitals involved in the tight-binding states. In insulators there are only inter-band charge oscillations. If atomic dipolar transitions are allowed, the corresponding collectivemodes reduce in the asymptotic limit of vanishing bandwidths to Frenkel excitons for an atomic insulator with weak on-site interactions. The finite bandwidths renormalize the dispersion of these modes and introduce a continuum of incoherent inter-band electron-hole excitations. The possible Landau damping of collective modes due to the presence of this continuum is discussed in detail. In conductors the intra-band charge fluctuations give rise to plasmons. If the atomic dipolar transitions are forbidden, the coupling of inter-band collective modes and plasmons tends to zero as q → 0. On the contrary, in dipolar conductors this coupling is strong and nonperturbative, due to the long range monopole-dipole interactions between intra-band and inter-band charge fluctuations. The resulting collective modes are hybrids of intra-band plasmons and inter-band dipolar oscillations. It is shown that the frequency of the lower hybridized longitudinal mode is proportional to the frequency of the transverse dipolar mode when the latter is small. The dielectric instability in a multi-band conductor is therefore characterized by the simultaneous softening of a transverse and a longitudinal mode, which is an important, directly measurable consequence of the present theory.  相似文献   

9.
The onset of collective behavior in a population of globally coupled oscillators with randomly distributed frequencies is studied for phase dynamical models with arbitrary coupling; the effect of a stochastic temporal variation in the frequencies is also included. The Fokker-Planck equation for the coupled Langevin system is reduced to a kinetic equation for the oscillator distribution function. Instabilities of the phase-incoherent state are studied by center manifold reduction to the amplitude dynamics of the unstable modes. Depending on the coupling, the coefficients in the normal form can be singular in the limit of weak instability when the diffusive effect of the noise is neglected. A detailed analysis of these singularities to all orders in the normal form expansion is presented. Physically, the singularities are interpreted as predicting an altered scaling of the entrained component near the onset of synchronization. These predictions are verified by numerically solving the kinetic equation for various couplings and frequency distributions.  相似文献   

10.
The non-linear flux equation, the non-linear Fokker-Planck equation (or Smoluchowski equation), and the non-linear Langiven equation are the basicequations for describing particle diffusion in non-ideal system subjected totime-dependent external fields. Nevertheless, the exact solution of thoseequations is still a challenge because of their inherent complexity of thenon-linear mathematics. Li et al. found that, based on the defined apparentvariables, the non-linear Fokker-Planck equation and the non-linear flux equation could be transformed to linear forms under the condition of strong friction limit or local equilibrium assumption. In this paper, some new features of the theory were found: (i) The linear flux equation for describing non-linear diffusion can be obtained from the irreversible thermodynamic theory; (ii) The linear non-steady state diffusion equation for describing non-linear diffusion of the non-steady state, which was described by the non-linear Fokker-Planck equation, can be derived more consistently from the microscopic molecular statistical theory; (iii) In the theory, thenon-linear Langiven equation also bears a linear form; (iv) For some special cases, e.g. diffusion in a periodic total potential system, the local equilibrium assumption or the strong friction limit is not required in establishing the linear theory for describing non-linear diffusion, so the linear theory may be important in the study of Brown motor.  相似文献   

11.
The Fokker-Planck coefficients for Coulomb interaction, or the friction coefficient (Δυα) (the average change in velocity) and the diffusion coefficient (ΔυαΔυα), are evaluated by an appropriate variable change technique. This approach reduces the five-fold integral expressions of the Fokker-Planck coefficients to one-fold integral without meeting the divergence difficulties. A new Debye cutoff parameter Δυαmin, instead of the customary θmin cutoff avoids the error incurred through the customary neglecting of velocity dependence of the Coulomb logarithm. The dominant terms of the new results are similar to Chandrasekhar's results. A non-dominant term, which can exceed the dominant one in the case of υα2 > υβt2lnA is added for (Δυα||2).  相似文献   

12.
牛晓娜  张国华  孙其诚  赵雪丹  董远湘 《物理学报》2016,65(3):36301-036301
利用颗粒离散元方法,研究了由2048个有摩擦的单分散圆盘颗粒组成的体系在各向同性压缩条件下,颗粒摩擦系数μ对颗粒体系结构与振动特性的影响.结果表明:固定压强下,随μ的增大,区分德拜标度与态密度平台的过渡频率ω*与玻色峰频率ωBP均向低频移动,玻色峰高度D(ωBP)/ωBP逐渐增加.主要原因是μ增大导致颗粒体系无序程度增加(平均配位数减小)而在ωω*处出现了大量额外模式.模式分析表明:低频(ω1.0)模式主要是以平动为主的混合模式,中频(1.0ω4.0)模式主要是以平动为主的混合局域化模式,高频(ω4.0)振动模式几乎为纯转动的局域化模式;并且随μ的增大,低频下平动模式更加局域化,同时低频转动模式的贡献也逐渐增加,暗示在高摩擦系数下低频转动模式产生更重要的影响.  相似文献   

13.
A one-dimensional elastic system with distributed contact under fixed boundary conditions is investigated in order to study dynamic behavior under sliding friction. A partial differential equation of motion is established and its exact solution is presented. Due to the friction the eigenvalue problem is non-self-adjoint. Mathematical methods for handling the non-self-adjoint system, such as the non-self-adjoint eigenvalue problem and the eigenvalue problem with a proper inner product, are reviewed and applied. The exact solution showed that the undamped elastic system under fixed boundary conditions is neutrally stable when the coefficient of friction is a constant. The assumed mode approximation and the lumped-parameter discretization method are evaluated and their solutions are compared with the exact solution. As a cautionary example the assumed modes approximation leads to false conclusions about stability. The lumped-parameter discretization algorithm generates reliable results.  相似文献   

14.
Francis Bailly 《Physica A》1976,85(3):528-552
Using the kinetic methods of the Brussels school, we establish the equation (to the second order in the perturbation) for the return to equilibrium of the one-particle energy distribution function in the nematic phase of a fluid made of thin slabs interacting through a P2-type potential. On the basis of the mean field equilibrium theory developed by Maier and Saupe for such a fluid, we show that for a very heavy brownian particle, this equation reduces to a Fokker-Planck type equation; the friction coefficient thus obtained is compared with the friction coefficient obtained for the isotropic phase and we show that they are equal for the transition temperature.  相似文献   

15.
We show that entangled entanglement can be obtained from a multimode Raman laser. In this system, all lasing modes constitute a quantum-beat. Equivalently, one collective mode is operated well above threshold and exhibits the sub-Poissonian statistics, while other orthonormal collective modes are excluded from the interacting system and stay in vacuum states. This determines entanglement between any two sub-collections, in each of which exists entanglement between any two sub-sub-collections, and so on, if present. This scheme is accessible based on the recent experimental progress in Raman lasers.  相似文献   

16.
In the large damping limit we derive a Fokker-Planck equation in configuration space (the so-called Smoluchowski equation) describing a Brownian particle immersed into a thermal environment and subjected to a nonlinear external force. We quantize this stochastic system and survey the problem of escape over a double-well potential barrier. Our finding is that the quantum Kramers rate does not depend on the friction coefficient at low temperatures; i.e., we predict a superfluidity phenomenon in overdamped open systems. Moreover, at zero temperature we show that the quantum escape rate does not vanish in the strong friction regime. This result, therefore, is in contrast with the work by Ankerhold et al. [Phys. Rev. Lett. 87, 086802 (2001)]] in which no quantum tunneling is predicted at zero temperature.  相似文献   

17.
Amal K. Das 《Physica A》1982,110(3):489-500
A model previously discussed by the author to study Brownian motion of charged carriers in a quantizing magnetic field is extended to include a Landau level-dependent friction parameter. A phase-space Fokker-Planck equation is used to derive a generalized diffusion equation describing spatial diffusion of the carriers, coupled with random jumps between adjacent Landau levels. This partial differential-difference equation is solved analytically. The longitudinal “global” diffusion coefficient is calculated and shown to be enhanced over the value in the extreme quantum limit.  相似文献   

18.
19.
Many fundamental studies have been conducted to explain the occurrence of squeal in disc and drum brake systems. The elimination of brake squeal, however, still remains a challenging area of research. Here, a numerical modeling approach is developed for investigating the onset of squeal in a drum brake system. The brake system model is based on the modal information extracted from finite element models for individual brake components. The component models of drum and shoes are coupled by the shoe lining material which is modeled as springs located at the centroids of discretized drum and shoe interface elements. The developed multi degree of freedom coupled brake system model is a linear non-self-adjoint system. Its vibrational characteristics are determined by a complex eigenvalue analysis. The study shows that both the frequency separation between two system modes due to static coupling and their associated mode shapes play an important role in mode merging. Mode merging and veering are identified as two important features of modes exhibiting strong interactions, and those modes are likely candidates that lead to coupled-mode instability. Techniques are developed for a parameter sensitivity analysis with respect to lining stiffness and the stiffness of the brake actuation system. The influence of lining friction coefficient on the propensity to squeal is also discussed.  相似文献   

20.
We theoretically investigate the collective phase synchronization between interacting groups of globally coupled noisy identical phase oscillators exhibiting macroscopic rhythms. Using the phase reduction method, we derive coupled collective phase equations describing the macroscopic rhythms of the groups from microscopic Langevin phase equations of the individual oscillators via nonlinear Fokker-Planck equations. For sinusoidal microscopic coupling, we determine the type of the collective phase coupling function, i.e., whether the groups exhibit in-phase or antiphase synchronization. We show that the macroscopic rhythms can exhibit effective antiphase synchronization even if the microscopic phase coupling between the groups is in-phase, and vice versa. Moreover, near the onset of collective oscillations, we analytically obtain the collective phase coupling function using center-manifold and phase reductions of the nonlinear Fokker-Planck equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号