首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Let Ω be an arbitrary open subset of Rn of finite positive measure, and assume the existence of a subset Λ ? Rn such that the exponential functions eλ = exp i(λ1x1 + … + λnxn), λ = (λ1,…, λn) ∈ Λ, form an orthonormal basis for L2(Ω) with normalized measure. Assume 0 ∈ Λ and define subgroups K and A of (Rn, +) by K = Λ0 = {γ ∈ Rn:γ·λ ∈ 2πZ}, A = {a ∈ Rn:Uam U1a = m}, where Ut is the unitary representation of Rn on L2(Ω) given by Ute = eitλeλ, tRn, λ ∈ Λ, and where m is the multiplication algebra of L(Ω) on L2. Assume that A is discrete. Then there is a discrete subgroup D ? A of dimension n, a fundamental domain D for D, and finite sets of representers RΛ, RΓ, RΩ, each containing 0, RΛ for AK in K0, and RΩ for AK in A such that Ω is disjoint union of translates of D: Ω = ∪a∈RΩ (a + D), neglecting null sets, and Λ = RΛD0. If RΓ is a set of representers for DA in D, then Γ = RΓK is a translation set for Ω, i.e., Ω ⊕ Γ = Rn, direct sum, (neglecting null sets). The case A = Rn corresponds to Ω = D, Λ = D0 and Γ = K. This last case corresponds in turn to a function theoretic assumption of Forelli.  相似文献   

2.
Let P(X) be a homogeneous polynomial in X = (x, y), Q(X) a positive definite integral binary quadratic form, and G the group of integral automorphs of Q(X). Let A(m) = {NZ × Z : Q(N) = m}. It is shown that if ΣNA(m)P(N) = 0 for each m = 1, 2, 3,… then ΣUGP(UX) ≡ 0.  相似文献   

3.
Given a lattice Λ ? Rn and a bounded function g(x), xRn, vanishing outside of a bounded set, the functions ?(x)g?(x)?maxu∈Λg(u +x), ?(x)?Σu∈Λ g(u +x), and ?+(x)?Σu∈Λ maxv∈Λ min {g(v + x); g(u + v + x)} are defined and periodic mod Λ on Rn. In the paper we prove that ?(x) + ?+(x) ? 2?(x) ≥ ?(x) + h?+(x) ? 2?(x) holds for all xRn, where h(x) is any “truncation” of g by a constant c ≥ 0, i.e., any function of the form h(x)?g(x) if g(x) ≤ c and h(x)?c if g(x) > c. This inequality easily implies some known estimations in the geometry of numbers due to Rado [1] and Cassels [2]. Moreover, some sharper and more general results are also derived from it. In the paper another inequality of a similar type is also proved.  相似文献   

4.
Let?(x1,…,xp) be a polynomial in the variables x1,…,xp with nonnegative real coefficients which sum to one, let A1,…,Ap be stochastic matrices, and let ??(A1,…,Ap) be the stochastic matrix which is obtained from ? by substituting the Kronecker product of An11,…,Anppfor each term Xn11·?·Xnpp. In this paper, we present necessary and sufficient conditions for the Cesàro limit of the sequence of the powers of ??(A1,…,Ap) to be equal to the Kronecker product of the Cesàro limits associated with each of A1,…,Ap. These conditions show that the equality of these two matrices depends only on the number of ergodic sets under??(A1,…,Ap) and?or the cyclic structure of the ergodic sets under A1,…,Ap, respectively. As a special case of these results, we obtain necessary and sufficient conditions for the interchangeability of the Kronecker product and the Cesàro limit operator.  相似文献   

5.
6.
For a positive integer m, let A = {1 ≤ a < m2 | (a, m) = 1} and let n = |A|. For an integer x, let R(x) be the least positive residue of x modulo m and if (x, m) = 1, let x′ be the inverse of x modulo m. If m is odd, then |R(ab′)|a,bA = ?21?n(∏χa = 1m ? 1(a))), where χ runs over all the odd Dirichlet characters modulo m.  相似文献   

7.
Let Xj = (X1j ,…, Xpj), j = 1,…, n be n independent random vectors. For x = (x1 ,…, xp) in Rp and for α in [0, 1], let Fj1(x) = αI(X1j < x1 ,…, Xpj < xp) + (1 ? α) I(X1jx1 ,…, Xpjxp), where I(A) is the indicator random variable of the event A. Let Fj(x) = E(Fj1(x)) and Dn = supx, α max1 ≤ Nn0n(Fj1(x) ? Fj(x))|. It is shown that P[DnL] < 4pL exp{?2(L2n?1 ? 1)} for each positive integer n and for all L2n; and, as n → ∞, Dn = 0((nlogn)12) with probability one.  相似文献   

8.
We prove that if a global solution of the equation dXt = a(Xt) dBt, X0 = x exists for some x ? R and ∫0a2(Xs)ds = ∞, then one must have a ≠ 0 a.e.  相似文献   

9.
The following limit theorem on Hamiltonian systems (resp. corresponding Riccati matrix equations) is shown: Given(N, N)-matrices,A, B, C andn ∈ {1,…, N} with the following properties:A and kemelB(x) are constant, rank(I, A, …, A n?1) B(x)≠N,B(x)C n(R), andB(x)(A T)j-1 C(x)∈C n-j(R) forj=1, …, n. Then \(\mathop {\lim }\limits_{x \to x_0 } \eta _1^T \left( x \right)V\left( x \right)U^{ - 1} \left( x \right)\eta _2 \left( x \right) = d_1^T \left( {x_0 } \right)U\left( {x_0 } \right)d_2 \) forx 0R, whenever the matricesU(x), V(x) are a conjoined basis of the differential systemU′=AU + BV, V′=CU?A TV, and whenever ηi(x)∈R N satisfy ηi(x 0)=U(x 0)d i ∈ imageU(x 0) η′i-Aηni(x) ∈ imageB(x),B(x)(η′i(x)-Aηi(x)) ∈C n-1 R fori=1,2.  相似文献   

10.
A new normal form of Boolean functions based on the sum (mod 2), product and negation is presented. Let n = {1, 2,…, n}, let As be the family of s-element subsets of a set A and let πa?φxa = 1. Then every Boolean function ?(x1,x2,…,xn) has a normal form
?(x1,x2,…,xn=s=0nΠA∈ns1⊕dAΠa∈Axa
with unique coefficients dA? {0, 1}. A transformation of Galois normal form into the present normal form is also shown.  相似文献   

11.
If AT(m, N), the real-valued N-linear functions on Em, and σSN, the symmetric group on {…,N}, then we define the permutation operator Pσ: T(m, N) → T(m, N) such that Pσ(A)(x1,x2,…,xN = A(xσ(1),xσ(2),…, xσ(N)). Suppose Σqi=1ni = N, where the ni are positive integers. In this paper we present a condition on σ that is sufficient to guarantee that 〈Pσ(A1?A2???Aq),A1?A2?? ? Aq〉 ? 0 for AiS(m, ni), where S(m, ni) denotes the subspace of T(m, ni) consisting of all the fully symmetric members of T(m, ni). Also we present a broad generalization of the Neuberger identity which is sometimes useful in answering questions of the type described below. Suppose G and H are subgroups of SN. We let TG(m, N) denote all AT(m, N) such that Pσ(A) = A for all σ∈G. We define the symmetrizer SG: T(m, N)→TG(m,N) such that SG(A) = 1/|G|Σσ∈G Pσ(A). Suppose H is a subgroup of G and ATH(m, N). Clearly 6SG6(A) 6? 6A6. We are interested in the reverse type of comparison. In particular, if D is a suitably chosen subset of TH(m,N), then can we explicitly present a constant C>0 such that 6 SG(A)6?C6A6 for all AD?  相似文献   

12.
A function f(x) defined on X = X1 × X2 × … × Xn where each Xi is totally ordered satisfying f(xy) f(xy) ≥ f(x) f(y), where the lattice operations ∨ and ∧ refer to the usual ordering on X, is said to be multivariate totally positive of order 2 (MTP2). A random vector Z = (Z1, Z2,…, Zn) of n-real components is MTP2 if its density is MTP2. Classes of examples include independent random variables, absolute value multinormal whose covariance matrix Σ satisfies ??1D with nonnegative off-diagonal elements for some diagonal matrix D, characteristic roots of random Wishart matrices, multivariate logistic, gamma and F distributions, and others. Composition and marginal operations preserve the MTP2 properties. The MTP2 property facilitate the characterization of bounds for confidence sets, the calculation of coverage probabilities, securing estimates of multivariate ranking, in establishing a hierarchy of correlation inequalities, and in studying monotone Markov processes. Extensions on the theory of MTP2 kernels are presented and amplified by a wide variety of applications.  相似文献   

13.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

14.
The probability measure of X = (x0,…, xr), where x0,…, xr are independent isotropic random points in Rn (1 ≤ rn ? 1) with absolutely continuous distributions is, for a certain class of distributions of X, expressed as a product measure involving as factors the joint probability measure of (ω, ?), the probability measure of p, and the probability measure of Y1 = (y01,…, yr1). Here ω is the r-subspace parallel to the r-flat η determined by X, ? is a unit vector in ω with ‘initial’ point at the origin [ω is the (n ? r)-subspace orthocomplementary to ω], p is the norm of the vector z from the origin to the orthogonal projection of the origin on η, and yi1 = (xi ? z)α(p2), where α is a scale factor determined by p. The probability measure for ω is the unique probability measure on the Grassmann manifold of r-subspaces in Rn invariant under the group of rotations in Rn, while the conditional probability measure of ? given ω is uniform on the boundary of the unit (n ? r)-ball in ω with centre at the origin. The decomposition allows the evaluation of the moments, for a suitable class of distributions of X, of the r-volume of the simplicial convex hull of {x0,…, xr} for 1 ≤ rn.  相似文献   

15.
Let (Ω, β, μX) and (?, F, μN) be probability spaces, with f: Ω × ? ? ? a β × F|F measurable map. Define μXY on β × F by μXY(A) = μX ? μN{(x, y): (x, f(x, y)) ?A}, and let μY = (μX ? μN)of?1. An expression is determined for computing the Shannon information in the measure μXY. This expression is used to compute the information for the non-linear additive Gaussian channel, and can be used to solve the channel capacity problem.  相似文献   

16.
Let V be an n-dimentional unitary space with inner product (·,·) and S the set {xV:(x, x)=1}. For any A∈Hom(V, V) and q∈C with ∣q∣?1, we define
W(A:q)={(Ax, y):x, y∈S, (x, y)=q}
. If q=1, then W(A:q) is just the classical numerical range {(Ax, x):xS}, the convexity of which is well known. Another generalization of the numerical range is the C-numerical range, which is defined to be the set
WC(A)={tr(CU1AU):U unitary}
where C∈Hom(V, V). In this note, we prove that W(A:q) is always convex and that WC(A) is convex for all A if rank C=1 or n=2.  相似文献   

17.
18.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

19.
We consider two Gaussian measures P1 and P2 on (C(G), B) with zero expectations and covariance functions R1(x, y) and R2(x, y) respectively, where Rν(x, y) is the Green's function of the Dirichlet problem for some uniformly strongly elliptic differential operator A(ν) of order 2m, m ≥ [d2] + 1, on a bounded domain G in Rd (ν = 1, 2). It is shown that if the order of A(2) ? A(1) is at most 2m ? [d2] ? 1, then P1 and P2 are equivalent, while if the order is greater than 2m ? [d2] ? 1, then P1 and P2 are not always equivalent.  相似文献   

20.
We propose a generalization of Heath's theorem that semi-metric spaces with point-countable bases are developable: A semi-metrizable space X is developabale if (and only if) there is on it a σ-discrete family C=?m?NCm of closed sets, interior-preserving over each member C of which is a countable family {Dn(C): n ∈ N} of collections of open sets such that if U is a neighbourhood of ξ∈X, then there are such a Γ∈C and such a v∈ N that ξ ? Γ and ξ∈ int ∩ (D: ξ: DDv(Γ))?U.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号