首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The achromatic number of a graph G is the maximum number of colours in a proper vertex colouring of G such that for any two distinct colours there is an edge of G incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of K 5 and K n for all n ≤ 24.  相似文献   

2.
An edge colouring of a graph G without isolated edges is neighbour-distinguishing if any two adjacent vertices have distinct sets consisting of colours of their incident edges. The general neighbour-distinguishing index of G is the minimum number of colours in a neighbour-distinguishing edge colouring of G. Gy?ri et al. [E. Gy?ri, M. Horňák, C. Palmer, M. Wo?niak, General neighbour-distinguishing index of a graph, Discrete Math. 308 (2008) 827-831] proved that provided G is bipartite and gave a complete characterisation of bipartite graphs according to their general neighbour-distinguishing index. The aim of this paper is to prove that if χ(G)≥3, then . Therefore, if log2χ(G)∉Z, then .  相似文献   

3.
The total graph T(G) of a multigraph G has as its vertices the set of edges and vertices of G and has an edge between two vertices if their corresponding elements are either adjacent or incident in G. We show that if G has maximum degree Δ(G), then T(G) is (2Δ(G) − 1)-choosable. We give a linear-time algorithm that produces such a coloring. The best previous general upper bound for Δ(G) > 3 was , by Borodin et al. When Δ(G) = 4, our algorithm gives a better upper bound. When Δ(G)∈{3,5,6}, our algorithm matches the best known bound. However, because our algorithm is significantly simpler, it runs in linear time (unlike the algorithm of Borodin et al.).  相似文献   

4.
Let F be a family of connected bipartite graphs, each with at least three vertices. A proper vertex colouring of a graph G with no bichromatic subgraph in F is F-free. The F-free chromatic number χ(G,F) of a graph G is the minimum number of colours in an F-free colouring of G. For appropriate choices of F, several well-known types of colourings fit into this framework, including acyclic colourings, star colourings, and distance-2 colourings. This paper studies F-free colourings of the cartesian product of graphs.  相似文献   

5.
A proper vertex colouring of a 2-connected plane graph G is a parity vertex colouring if for each face f and each colour c, either no vertex or an odd number of vertices incident with f is coloured with c. The minimum number of colours used in such a colouring of G is denoted by χp(G).In this paper, we prove that χp(G)≤118 for every 2-connected plane graph G.  相似文献   

6.
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that the (p, 1)-total labelling number of every 1-planar graph G is at most Δ(G) + 2p − 2 provided that Δ(G) ≥ 8p+4 or Δ(G) ≥ 6p+2 and g(G) ≥ 4. As a consequence, the well-known (p, 1)-total labelling conjecture has been confirmed for some 1-planar graphs.  相似文献   

7.
Some results on spanning trees   总被引:2,自引:0,他引:2  
Some structures of spanning trees with many or less leaves in a connected graph are determined.We show(1) a connected graph G has a spanning tree T with minimum leaves such that T contains a longest path,and(2) a connected graph G on n vertices contains a spanning tree T with the maximum leaves such that Δ(G) =Δ(T) and the number of leaves of T is not greater than n D(G)+1,where D(G) is the diameter of G.  相似文献   

8.
A vertex coloring of a graph G is called injective if every two vertices joined by a path of length 2 get different colors. The minimum number χ i (G) of the colors required for an injective coloring of a graph G is clearly not less than the maximum degree Δ(G) of G. There exist planar graphs with girth g ≥ 6 and χ i = Δ+1 for any Δ ≥ 2. We prove that every planar graph with Δ ≥ 18 and g ≥ 6 has χ i ≤ Δ + 1.  相似文献   

9.
The maximum matching graph M(G) of a graph G is a simple graph whose vertices are the maximum matchings of G and where two maximum matchings are adjacent in M(G) if they differ by exactly one edge. In this paper, we prove that if a graph is isomorphic to its maximum matching graph, then every block of the graph is an odd cycle.  相似文献   

10.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a′(G) ⩽ Δ(G) + 2 for any graphs. For planar graphs G with girth g(G), we prove that a′(G) ⩽ max{2Δ(G) − 2, Δ(G) + 22} if g(G) ⩾ 3, a′(G) ⩽ Δ(G) + 2 if g(G) ⩾ 5, a′(G) ⩽ Δ(G) + 1 if g(G) ⩾ 7, and a′(G) = Δ(G) if g(G) ⩾ 16 and Δ(G) ⩾ 3. For series-parallel graphs G, we have a′(G) ⩽ Δ(G) + 1. This work was supported by National Natural Science Foundation of China (Grant No. 10871119) and Natural Science Foundation of Shandong Province (Grant No. Y2008A20).  相似文献   

11.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we prove that every graph G with girth g(G) and maximum degree Δ(G) that can be embedded in a surface of nonnegative characteristic has lc(G) = Δ(2G )+ 1 if there is a pair (Δ, g) ∈ {(13, 7), (9, 8), (7, 9), (5, 10), (3, 13)} such that G s...  相似文献   

12.
The Entire Coloring of Series-Parallel Graphs   总被引:2,自引:0,他引:2  
The entire chromatic number X_(vef)(G) of a plane graph G is the minimal number of colors needed for coloring vertices, edges and faces of G such that no two adjacent or incident elements are of the same color. Let G be a series-parallel plane graph, that is, a plane graph which contains no subgraphs homeomorphic to K_(4-) It is proved in this paper that X_(vef)(G)≤max{8, △(G) 2} and X_(vef)(G)=△ 1 if G is 2-connected and △(G)≥6.  相似文献   

13.
A colouring of the vertices of a graph (or hypergraph) G is adapted to a given colouring of the edges of G if no edge has the same colour as both (or all) its vertices. The adaptable chromatic number of G is the smallest integer k such that each edge-colouring of G by colours 1,2,…,k admits an adapted vertex-colouring of G by the same colours 1,2,…,k. (The adaptable chromatic number is just one more than a previously investigated notion of chromatic capacity.) The adaptable chromatic number of a graph G is smaller than or equal to the ordinary chromatic number of G. While the ordinary chromatic number of all (categorical) powers Gk of G remains the same as that of G, the adaptable chromatic number of Gk may increase with k. We conjecture that for all sufficiently large k the adaptable chromatic number of Gk equals the chromatic number of G. When G is complete, we prove this conjecture with k≥4, and offer additional evidence suggesting it may hold with k≥2. We also discuss other products and propose several open problems.  相似文献   

14.
The Erdős-Sós conjecture says that a graph G on n vertices and number of edges e(G) > n(k− 1)/2 contains all trees of size k. In this paper we prove a sufficient condition for a graph to contain every tree of size k formulated in terms of the minimum edge degree ζ(G) of a graph G defined as ζ(G) = min{d(u) + d(v) − 2: uvE(G)}. More precisely, we show that a connected graph G with maximum degree Δ(G) ≥ k and minimum edge degree ζ(G) ≥ 2k − 4 contains every tree of k edges if d G (x) + d G (y) ≥ 2k − 4 for all pairs x, y of nonadjacent neighbors of a vertex u of d G (u) ≥ k.  相似文献   

15.
The topic of this paper is representing groups by edge-coloured graphs. Every edge-coloured graph determines a group of graph automorphisms which preserve the colours of the edges. An edge colouring of a graph G is called a perfect one iff every colour class is a perfect matching in G. We prove that every group H and all of its subgroups can be represented (up to isomorphism) by a group of colour preserving automorphisms related to some perfect colouring of the same graph.  相似文献   

16.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a′(G) ≤ Δ(G) + 2 for any graphs. In this paper, it is shown that the conjecture holds for planar graphs without 4- and 5-cycles or without 4- and 6-cycles.  相似文献   

17.
A total coloring of a graph G is a coloring of all elements of G, i.e. vertices and edges, such that no two adjacent or incident elements receive the same color. A graph G is s-degenerate for a positive integer s if G can be reduced to a trivial graph by successive removal of vertices with degree ≤s. We prove that an s-degenerate graph G has a total coloring with Δ+1 colors if the maximum degree Δ of G is sufficiently large, say Δ≥4s+3. Our proof yields an efficient algorithm to find such a total coloring. We also give a lineartime algorithm to find a total coloring of a graph G with the minimum number of colors if G is a partial k-tree, that is, the tree-width of G is bounded by a fixed integer k.  相似文献   

18.
For a finite group G let Γ(G) be the (simple) graph defined on the elements of G with an edge between two (distinct) vertices if and only if they generate G. The chromatic number of Γ(G) is considered for various non-solvable groups G.  相似文献   

19.
The rainbowness, rb(G), of a connected plane graph G is the minimum number k such that any colouring of vertices of the graph G using at least k colours involves a face all vertices of which receive distinct colours. For a connected cubic plane graph G we prove that
  相似文献   

20.
Let G be a finite group. We define the prime graph Γ(G) as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. Recently M. Hagie [5] determined finite groups G satisfying Γ(G) = Γ(S), where S is a sporadic simple group. Let p > 3 be a prime number. In this paper we determine finite groups G such that Γ(G) = Γ(PSL(2, p)). As a consequence of our results we prove that if p > 11 is a prime number and p ≢ 1 (mod 12), then PSL(2, p) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph. The third author was supported in part by a grant from IPM (No. 84200024).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号