首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Reduction of carbene‐borane adduct [(cAAC)BBr2(CN)] (cAAC=1‐(2,6‐diisopropylphenyl)‐3,3,5,5‐tetramethylpyrrolidin‐2‐ylidene) cleanly yielded the tetra(cyanoborylene) species [(cAAC)B(CN)]4 presenting a 12‐membered (BCN)4 ring. The analysis of the Kohn–Sham molecular orbitals showed significant borylene character of the BI atoms. [(cAAC)B(CN)]4 was found to reduce two equivalents of AgCN per boron center to yield [(cAAC)B(CN)3] and fragmented into two‐coordinate boron(I) units upon reaction with IMeMe (1,3,4,5‐tetramethylimidazol‐2‐ylidene) to yield the corresponding tricoordinate mixed cAAC‐NHC cyanoborylene. The analogous cAAC‐phosphine cyanoborylene was obtained by reduction of [(cAAC)BBr2(CN)] in the presence of excess phosphine.  相似文献   

2.
Reduction of the neutral carbene tetrachlorosilane adduct (cAAC)SiCl4 (cAAC=cyclic alkyl(amino) carbene :C(CMe2)2(CH2)N(2,6‐iPr2C6H3) with potassium graphite produces stable (cAAC)3Si3, a carbene‐stabilized triatomic silicon(0) molecule. The Si?Si bond lengths in (cAAC)3Si3 are 2.399(8), 2.369(8) and 2.398(8) Å, which are in the range of Si?Si single bonds. Each trigonal pyramidal silicon atom of the triangular molecule (cAAC)3Si3 possesses a lone pair of electrons. Its bonding, stability, and electron density distributions were studied by quantum chemical calculations.  相似文献   

3.
An elegant general synthesis route for the preparation of two coordinate palladium(0) and platinum(0) complexes was developed by reacting commercially available tetrakis(triphenylphosphine)palladium/platinum with π‐accepting cyclic alkyl(amino) carbenes (cAACs). The complexes are characterized by NMR spectroscopy, mass spectrometry, and single‐crystal X‐ray diffraction. The palladium complexes exhibit sharp color changes (crystallochromism) from dark maroon to bright green if the C‐Pd‐C bond angle is sharpened by approximately 6°, which is chemically feasible by elimination of one lattice THF solvent molecule. The analogous dark orange‐colored platinum complexes are more rigid and thus do not show this phenomenon. Additionally, [(cAAC)2Pd/Pt] complexes can be quasi‐reversibly oxidized to their corresponding [(cAAC)2Pd/Pt]+ cations, as evidenced by cyclic voltammetry measurements. The bonding and stability are studied by theoretical calculations.  相似文献   

4.
Cyclic alkyl(amino) carbene (cAAC)-supported, structurally diverse alkali metal-phosphinidenides 2 – 5 of general formula ((cAAC)P-M)n(THF)x [ 2 : M=K, n=2, x=4; 3 : M=K, n=6, x=2; 4 : M=K, n=4, x=4; 5 : M=Na, n=3, x=1] have been synthesized by the reduction of cAAC-stabilized chloro-phosphinidene cAAC=P-Cl ( 1 ) utilizing metallic K or KC8 and Na-naphthalenide as reducing agents. Complexes 2 – 5 have been structurally characterized in solid state by NMR studies and single crystal X-ray diffraction. The proposed mechanism for the electron transfer process has been well-supported by cyclic voltammetry (CV) studies and Density Functional Theory (DFT) calculations. The solid state oligomerization process has been observed to be largely dependent on the ionic radii of alkali metal ions, steric bulk of cAAC ligands and solvation/de-solvation/recombination of the dimeric unit [(cAAC)P-M(THF)x]2.  相似文献   

5.
As a part of efforts to prepare new “metallachalcogenolate” precursors and develop their chemistry for the formation of ternary mixed‐metal chalcogenide nanoclusters, two sets of thermally stable, N‐heterocyclic carbene metal–chalcogenolate complexes of the general formula [(IPr)Ag?ESiMe3] (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene; E=S, 1 ; Se, 2 ) and [(iPr2‐bimy)Cu?ESiMe3]2 (iPr2‐bimy=1,3‐diisopropylbenzimidazolin‐2‐ylidene; E=S, 4 ; Se, 5 ) are reported. These are prepared from the reaction between the corresponding carbene metal acetate, [(IPr)AgOAc] and [(iPr‐bimy)CuOAc] respectively, and E(SiMe3)2 at low temperature. The reaction of [(IPr)Ag?ESiMe3] 1 with mercury(II) acetate affords the heterometallic complex [{(IPr)AgS}2Hg] 3 containing two (IPr)Ag?S? fragments bonded to a central HgII, representing a mixed mercury–silver sulfide complex. The reaction of [(iPr2‐bimy)Cu‐SSiMe3]2, which contains a smaller N‐heterocyclic‐carbene, with mercuric(II) acetate affords the high nuclearity cluster, [(iPr2‐bimy)6Cu10S8Hg3] 6 . The new N‐heterocyclic carbene metal–chalcogenolate complexes 1 , 2 , 4 , 5 and the ternary mixed‐metal chalcogenolate complex 3 and cluster 6 have been characterized by multinuclear NMR spectroscopy (1H and 13C), elemental analysis and single‐crystal X‐ray diffraction.  相似文献   

6.
The Me‐cAAC:‐stabilized dimer of silicon disulfide (SiS2) has been isolated in the molecular form as (Me‐cAAC:)2Si2S4 ( 2 ) at room temperature [Me‐cAAC:=cyclic alkyl(amino) carbene]. Compound 2 has been synthesized from the reaction of (Me‐cAAC:)2Si2 with elemental sulfur in a 1:4 molar ratio under oxidative addition. This is the smallest molecular unit of silicon disulfide characterized by X‐ray crystallography, electron ionization mass spectrometry, and NMR spectroscopy. Structures with three sulfur atoms arranged around a silicon atom are known; however, 2 is the first structurally characterized silicon–sulfur compound containing one terminal and two bridging sulfur atoms at each silicon atom. Compound 2 shows no decomposition after storing for three months in an inert atmosphere at ambient temperature. The bonding of 2 has been further studied by theoretical calculations.  相似文献   

7.
The palladium(II) and platin(II) 1, 1‐dicyanoethylene‐2, 2‐dithiolates [(L–L)M{S2C=C(CN)2}] (M = Pd: L–L = dppm, dppe, dcpe, dpmb; M = Pt: dppe, dcpe, dpmb) were prepared either from[(L–L)MCl2] and K2[S2C=C(CN)2] or from [(PPh3)2M{S2C=C(CN)2}] and the bisphosphane. Moreover, [(dppe)Pt{S2C=C(CN)2}]was obtained from [(1, 5‐C8H12)Pt{S2C=C(CN)2}] and dppeby ligand exchange. The 1, 1‐dicyanoethylene‐2, 2‐diselenolates[(dppe)M{Se2C=C(CN)2}] (M = Pd, Pt) were prepared from[(dppe)MCl2] and K2[Se2C=C(CN)2]. The oxidation potentials of the square‐planar palladium and platinum complexes were determined by cyclic voltammetry. The reaction of [(dcpe)Pd(S2C=O)] with TCNE led to a ligand fragment exchange and gave the 1, 1‐dicyanoethylene‐2, 2‐dithiolate [(dcpe)Pd{S2C=C(CN)2}] in good yield.  相似文献   

8.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

9.
The dialkyl compound cis‐dimethyl[(sulfinyl‐κS)bis[methane]][tris(2‐methylphenyl)phosphine]platinum(2+) (cis‐[Pt(Me)2(dmso)(P(o‐tol)3]; 1 ) has been isolated from the reaction of cis‐dimethylbis[(sulfinyl‐κS)bis[methane]]platinum(2+) (cis‐[Pt(Me)2(dmso)2]) with tris(2‐methylphenyl)phosphane (P(o‐tol)3). Restricted rotation around the P? Cipso bonds of the phosphane ligand generates two different conformers, 1a and 1b , in rapid exchange in non‐polar solvents at low temperature. Strong through‐space contacts between the ortho‐Me substituent groups on the ligand and the cis‐Me groups in the coordination plane were determined, which proved useful for identifying the atropisomers formed. At room temperature, 1H‐NMR spectra of 1 maintain a ‘static’ pattern upon onset of easy and rapid ortho‐platination, leading to [[2‐[bis(2‐methylphenyl)phosphino‐κP]phenyl]methyl‐κC]methyl[(sulfinyl‐κS)bis[methane]]platinum(2+) ( 2 ), a new C,P‐cyclometalated compound of platinum(II), with liberation of methane. The process has been studied by 1H‐ and 31P{1H}‐NMR in CDCl3, and kinetics experiments were performed by conventional spectrophotometric techniques. The first‐order rate constants kc decrease with the addition of dimethyl sulfoxide until the process is blocked by the presence of a sufficient excess of sulfoxide. This behavior reveals a mechanism initiated by ligand dissociation and formation of a three‐coordinate species. The value of the rate constant for dimethyl sulfoxide dissociation k1 has been measured independently over a wide temperature range by both 1H‐NMR ligand exchange (isotopic labeling experiments) and ligand substitution (stopped‐flow pyridine for dimethyl sulfoxide substitution). The rates of the two processes are in reasonable agreement at the same temperature, and a single Eyring plot can be constructed with the two sets of kinetics data. However, the value of the derived dissociation constant at 308 K (k1=6.5±0.3 s?1) is at least two orders of magnitude higher than that of cyclometalation (kc=0.0098±0.0009 s?1 at 308 K). Clearly, the dissociation step is not rate‐determining for cyclometalation. A multistep mechanism consistent with mass‐law retardation is derived, which involves a pre‐equilibrium that controls the concentration of an unsaturated three‐coordinate, 14‐electron T‐shaped cis‐[PtMe2{P(o‐tol)3}] intermediate. Cyclometalation is initiated in this latter by an agostic interaction with the σ(C? H) orbital of a methyl group. Oxidative addition of the C? H bond follows, yielding a cyclometalated‐hydrido 16‐electron Pt(IV) five‐coordinate intermediate. Finally, reductive elimination and re‐entry of dimethyl sulfoxide with liberation of methane should yield the cyclometalated species 2 .  相似文献   

10.
Compound (Me2‐cAAC:)2Co0 ( 2 ; Me2‐cAAC:=cyclic (alkyl) amino carbene; :C(CH2)(CMe2)2N‐2,6‐iPr2C6H3) was synthesized by the reduction of the precursor (Me2‐cAAC:)2CoICl ( 1 ) with KC8 in THF. The cyclic voltammogram of 1 exhibited one‐electron reduction, which suggests that synthesis of a bent 2‐metallaallene ( 2 ) from 1 should be possible. Compound 2 contains one cobalt atom in the formal oxidation state zero, which is stabilized by two Me2‐cAAC: ligands. Bond lengths from X‐ray diffraction are 1.871(2) and 1.877(2) Å with a C‐Co‐C bond angle of 170.12(8)°. The EPR spectrum of 2 exhibited a broad resonance attributed to the unique quasi‐linear structure, which favors near degeneracy and gives rise to very rapid relaxation conditions. The cAAC?Co bond in 2 can be considered as a typical Dewar–Chatt–Duncanson type of bonding, which in turn retains 2.5 electron pairs on the Co atom as nonbonding electrons.  相似文献   

11.
The title compounds, (2S)‐N‐[5‐(4‐chloro­phenyl)‐2,3‐di­hydro‐6H‐1,3,4‐thia­diazin‐2‐yl­idene]‐2‐[(phenyl­sulfonyl)­amino]­pro­pan­amide, C18H17ClN4O3S2, (I), (2R)‐N‐[5‐(4‐fluoro­phenyl)‐6H‐1,3,4‐thia­diazin‐2‐yl]‐2‐[(phenyl­sulfonyl)amino]­propan­amide, C18H17FN4O3S2, (II), and (2S)‐N‐[5‐(5‐chloro‐2‐thienyl)‐6H‐1,3,4‐thia­diazin‐2‐yl]‐2‐[(phenyl­sulfonyl)­amino]­propan­amide, C16H15ClN4O3S3, (III), are potent inhibitors of matrix metalloproteinases. In all three compounds, the thia­diazine ring adopts a screw‐boat conformation. The mol­ecules of compound (I) show a short intramolecular NAla—H?Nexo hydrogen bond [N?N 2.661 (3) Å] and are linked into a chain along the c axis by Nendo—H?Sendo and Nendo—H?OAla hydrogen bonds [N?S 3.236 (3) and N?O 3.375 (3) Å] between neighbouring mol­ecules. In compound (II), the mol­ecules are connected antiparallel into a chain along the a axis by Nexo—H?OAla and NAla—H?Nendo hydrogen bonds [N?O 2.907 (6) and N?N 2.911 (6) Å]. The mol­ecules of compound (III) are dimerized antiparallel through Nexo—H?Nendo hydrogen bonds [N?N 2.956 (7) and 2.983 (7) Å]. The different hydrogen‐bonding patterns can be explained by an amido–imino tautomerism (prototropic shift) shown by different bond lengths within the 6H‐1,3,4‐thia­diazine moiety.  相似文献   

12.
For the first time, direct oxidation of elemental platinum by a mineral acid to its tetravalent state was observed in course of the reaction of platinum with oleum (65 % SO3) in the presence of barium carbonate. The reaction has been carried out in torch‐sealed glass ampoules at 160 °C and gave yellow single crystals of Ba[Pt(S2O7)3](H2SO4)0.5(H2S2O7)0.5 (triclinic, P$\bar 1$ , Z=2, a=992.05(2), b=1069.07(3), c=1114.22(3) pm, α=69.49(7), β=72.96(2), γ=72.93(1)°, V=1033.95(5) Å3). The structure of Ba[Pt(S2O7)3](H2SO4)0.5(H2S2O7)0.5 exhibits the unique tris‐(disulfato)‐platinate anion [Pt(S2O7)3]2? with three chelating disulfate groups coordinated to the platinum atom. Charge balance is achieved by the Ba2+ ions, which are coordinated by (S2O7)2? groups from the platinate complex and by disordered sulfuric acids and disulfuric acid molecules. Thermal decomposition of the bulk material revealed elemental platinum and barium sulfate as decomposition residual.  相似文献   

13.
Geometry and bonding energy analysis of M–S2O bonds in the metal‐disulfur monoxide complexes [(PMe3)2M(S2O)] of nickel, palladium, and platinum were investigated at DFT, DFT‐D3, and DFT‐D3(BJ) methods using three different functionals (BP86, PBE, and TPSS). The TPSS/DFT‐D3(BJ) yields better geometry, while the BP86 geometry is least accurate for studied complexes. The geometry of platinum complex optimized at TPSS/DFT‐D3(BJ) level is in excellent agreement with the available experimental values. The M–S bonds are shorter than the M–S(O) bonds. The Mayer bond orders suggest the presence of M–S and M–S(O) single bonds. Both the M–S and M–S(O) bond lengths vary with the density functionals as TPSS‐D3(BJ) < TPSS < PBE < BP86. The Hirshfeld charge distribution indicates that the overall charge flows from metal fragment to [S2O]. The Ni–S2O bond has greater degree of covalent character than the ionic. The contribution of dispersion interactions is large in computing accurate bond dissociation energies between the interacting fragments. The BDEs are largest for the functional TPSS and smallest for the functional BP86. The DFT‐D3 dispersion corrections to the BDEs between the metal fragments [(PMe3)2M] and ligand fragment [(S2O)] for the TPSS functional are in the range 7.1–7.3 kcal · mol–1, which are smaller than the corresponding DFT‐D3(BJ) dispersion corrections (9.4–10.6 kcal · mol–1).  相似文献   

14.
Copper–carbene [TpxCu?C(Ph)(CO2Et)] and copper–diazo adducts [TpxCu{η1‐N2C(Ph)(CO2Et)}] have been detected and characterized in the context of the catalytic functionalization of O?H bonds through carbene insertion by using N2?C(Ph)(CO2Et) as the carbene source. These are the first examples of these type of complexes in which the copper center bears a tridentate ligand and displays a tetrahedral geometry. The relevance of these complexes in the catalytic cycle has been assessed by NMR spectroscopy, and kinetic studies have demonstrated that the N‐bound diazo adduct is a dormant species and is not en route to the formation of the copper–carbene intermediate.  相似文献   

15.
The elusive phosphinidene-chlorotetrylenes, [PGeCl] and [PSiCl] have been stabilized by the hetero-bileptic cyclic alkyl(amino) carbene (cAAC), N-heterocyclic carbene (NHC) ligands, and isolated in the solid state at room temperature as the first neutral monomeric species of this class with the general formulae (L)P-ECl(L′) (E=Ge, 3 a – 3 c ; E=Si, 6 ; L=cAAC; L′=NHC). Compounds 3 a – 3 c have been synthesized by the reaction of cAAC-supported potassium phosphinidenides [cAAC=PK(THF)x]n ( 1 a – 1 c ) with the adduct NHC:→GeCl2 ( 2 ). Similarly, compound 6 has been synthesized via reaction of 1 a with NHC:→SiCl2 adduct ( 4 ). Compounds 3 a – 3 c , and 6 have been structurally characterized by single-crystal X-ray diffraction, NMR spectroscopy and mass spectrometric analysis. DFT calculations revealed that the heteroatom P in 3 bears two lone pairs; the non-bonding pair with 67.8 % of s- and 32 % of p character, whereas the other lone pair is involved in π backdonation to the CcAAC-N π* of cAAC. The Ge atom in 3 contains a lone pair with 80 % of s character, and slightly involved in the π backdonation to CNHC. EDA-NOCV analyses showed that two charged doublet fragments {(cAAC)(NHC)}+, and {PGeCl} prefer to form one covalent electron-sharing σ bond, one dative σ bond, one dative π bond, and a charge polarized weak π bond. The covalent electron-sharing σ bond contributes to the major stabilization energy to the total orbital interaction energy of 3 , enabling the first successful isolations of this class of compounds ( 3 , 6 ) in the laboratory.  相似文献   

16.
A zwitterionic boraalkenyl boronium 3 was synthesized by reduction of cyclic (alkyl)(amino)carbene (cAAC) and trimethylphosphine (PMe3)‐coordinated tetrabromodiborane 2 with KC8 in the presence of PMe3. Further reduction of 3 led to the formation of neutral allenic diborene 4 . X‐ray diffraction and computational studies revealed that 4 features the cumulated C=B and B=B double bonds. The reaction of 4 with four isonitrile molecules afforded a heterocycle 5 with the B2C3 five‐membered ring, via a complete scission of the B=B bond of 4 .  相似文献   

17.
Terminal arylalumylene complexes of platinum [Ar‐Al‐Pt(PCy3)2] (Ar=2,6‐[CH(SiMe3)2]2C6H3 (Bbp) or 2,6‐[CH(SiMe3)2]2‐4‐(tBu)C6H2 (Tbb)) have been synthesized either by the reaction of a dialumene–benzene adduct with [Pt(PCy3)2], or by the reduction of 1,2‐dibromodialumanes Ar(Br)Al‐Al(Br)Ar in the presence of [Pt(PCy3)2]. X‐Ray crystallographic analysis reveals that the Al? Pt bond lengths of these arylalumylene complexes are shorter than the previously reported shortest Al? Pt distance. DFT calculations suggest that the Al? Pt bonds in the arylalumylene complexes have a significantly high electrostatic character.  相似文献   

18.
The tetravalent platinum stiboranyl complex [(o‐(Ph2P)C6H4)2(o‐C6Cl4O2)Sb]PtCl2Ph ( 2 ) has been synthesized by reaction of [(o‐(Ph2P)C6H4)2SbClPh]PtCl ( 1 ) with o‐chloranil. In the presence of fluoride anions, the stiboranyl moiety of 2 displays non‐innocent behavior and is readily converted into a fluorostiborane unit. This transformation, which is accompanied by elimination of a chloride ligand from the Pt center, results in the formation of [(o‐(Ph2P)C6H4)2(o‐C6Cl4O2)SbF]PtClPh ( 3 ). Structural, spectroscopic, and computational studies show that the conversion of 2 into 3 is accompanied by a cleavage of the covalent Pt? Sb bond present in 2 and formation of a longer and weaker Pt→Sb interaction in 3 . These results show that this new Pt–Sb platform supports the fluoride‐induced metamorphosis of a stiboranyl X ligand into a stiborane Z ligand.  相似文献   

19.
The crystal structures of the monomeric palladium(II) azide complexes of the type L2Pd(N3)2 (L = PPh3 ( 1 ), AsPh3 ( 2 ), and 2‐chloropyridine ( 3 )), the dimeric [(AsPh4)2][Pd2(N3)4Cl2] ( 4 ), the homoleptic azido palladate [(PNP)2][Pd(N3)4] ( 5 ) and the homoleptic azido platinates [(AsPh4)2][Pt(N3)4] · 2 H2O ( 6 ) and [(AsPh4)2][Pt(N3)6] ( 7 ) were determined by X‐ray diffraction at single crystals. 1 and 2 are isotypic and crystallize in the triclinic space group P1. 1 , 2 and 3 show terminal azide ligands in trans position. In 4 the [Pd2(N3)4Cl2]2– anions show end‐on bridging azide groups as well as terminal chlorine atoms and azide ligands. The anions in 5 and 6 show azide ligands in equal positions with almost local C4h symmetry at the platinum and palladium atom respectively. The metal atoms show a planar surrounding. The [Pt(N3)6]2– anions in 7 are centrosymmetric (idealized S6 symmetry) with an octahedral surrounding of six nitrogen atoms at the platinum centers.  相似文献   

20.
Bimetallic nanoparticles (NPs) often show new catalytic properties that are different from those of the parent metals. Carefully exploring the structures of bimetallic NPs is a prerequisite for understanding the structure‐associated properties. Herein, binary Pt?Sn NPs with tunable composition are prepared in a controllable manner. X‐ray characterizations reveal that their structures evolve from SnO2?x‐patched PtSn alloys to SnO2?x‐patched Pt clusters when more tin is incorporated. An obvious composition‐dependent catalytic performance is observed for the hydrogenation of α,β‐unsaturated aldehydes: the selectivity to unsaturated alcohol increases substantially at high tin content, whereas the reaction rate follows a volcano shape. Furthermore, Pt sites are responsible for hydrogen dissociation, whereas oxygen vacancy (Ovac) sites, provided by SnO2?x, drastically enhance the adsorption of carbonyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号