首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By exploiting the homology in the form of the truncated high-field homonuclear dipole–dipole and quadrupole coupling Hamiltonians, we have previously demonstrated that a simple adaptation of a rotor-synchronized pulse sequence (DRAMA) used for the recovery of dipole–dipole couplings can also be used to resurrect quadrupole couplings (QUADRAMA). In the canonical implementation of these recovery pulse sequences, the couplings are not significantly scaled down from their static sample values. While such minimal scaling is of course desirable in the recovery of typical homonuclear dipolar couplings ( ≤ 2 kHz) and small quadrupole couplings, it is clearly not ideal for the recovery of the much larger quadrupole couplings (20–200 kHz) often encountered in solid-state 2H NMR. In such a case, some prior knowledge of the order of magnitude of the coupling is required to optimize the experimental conditions for QUADRAMA. In order to overcome this drawback, in this study, we have developed a general and optimized strategy for implementing the QUADRAMA technique which does not require any knowledge of the size of the coupling νQ. Experimental tests of the optimized protocol demonstrate that by judicious choices of a combination of scaling factors and recoupling times, 2H quadrupole couplings ranging over an order of magnitude from 3 to 42 kHz can be measured. Since this optimized protocol can reliably be used to recover couplings over a broad range, it expands the range of systems accessible to study by 2H NMR into a realm where static sample NMR and simple MAS NMR may fail.  相似文献   

2.
A two-dimensional (13)C/(14)N heteronuclear multiple quantum correlation (HMQC) experiment using dipolar recoupling under magic-angle spinning (MAS) is described. The experiment is an extension of the recent indirect (13)C detection scheme for measuring (14)N quadrupolar coupling under MAS. The recoupling allows the direct use of the much larger dipolar interaction instead of the small J and residual dipolar couplings for establishing (13)C/(14)N correlations. Two recoupling methods are incorporated into the HMQC sequence, both applying rf only to the observed (13)C spin. The first one uses the REDOR sequence with two pi-pulses per rotor cycle. The second one uses a cw rf field matching the spinning frequency, known as rotary resonance. The effects of CSA, T(2)(') signal loss, MAS frequency and stability and t(1)-noise are compared and discussed.  相似文献   

3.
Phase modulated pulses for deuterium recoupling in (2)H-(13)C REDOR NMR spectroscopy have been introduced to improve dephasing of the detected (13)C nuclei. The deuterium inversion properties of phase modulated recoupling pulses have been studied experimentally on l-alanine-2-d(1) and theoretically using average Hamiltonian theory and exact simulations of the equation of motion of the density matrix. The best (13)C dephasing was observed when XYXYX (PM5) deuterium recoupling pulses were applied. A comparison to the 90 degrees -180 degrees -90 degrees (CPL) composite pulse scheme revealed an improvement of recoupling on the order of 2.5. Simple CW recoupling pulses of the same length of PM5 and CPL pulses showed the weakest (13)C dephasing. Simulations have shown that the (2)H recoupling efficiency of PM5 REDOR experiments approach the very efficient REAPDOR results. However, in our case a REAPDOR study of l-alanine-2-d(1) resulted in a significant decrease of the (13)C signal intensity due to pulse imperfections of (13)C pi-pulses. The new PM5-REDOR technique has been employed to study the torsion angle between C1/2 and C5 in ethylmalonic acid-4-d(2).  相似文献   

4.
This work introduces a simple new solid-state 13C NMR method for distinguishing various types of aromatic residues, e.g. those of lignin from fused rings of charcoal. It is based on long-range dipolar dephasing, which is achieved by recoupling of long-range C-H dipolar interactions, using two 1H 180 degrees pulses per rotation period. This speeds up dephasing of unprotonated carbon signals approximately threefold compared to standard dipolar dephasing without recoupling and thus provides much more efficient differential dephasing. It also reduces the effects of spinning-speed dependent effective proton-proton dipolar couplings on the heteronuclear dephasing. Signals of unprotonated carbons with two or more protons at a two-bond distance dephase to <3% within less than 0.9 ms, significantly faster than those of aromatic sites separated from the nearest proton by three or more bonds. Differential dephasing among different unprotonated carbons is demonstrated in a substituted anthraquinone and 3-methoxy benzamide. The data yield a calibration curve for converting the dephasing rates into estimated distances from the carbon to the nearest protons. This can be used for peak assignment in heavily substituted or fused aromatic molecules. Compared to lignin, slow dephasing is observed for the aromatic carbons in wood charcoal, and even slower for inorganic carbonate. Direct 13C polarization is used on these structurally complex samples to prevent loss of the signals of interest, which by design originate from carbons that are distant from protons and therefore crosspolarize poorly. In natural organic matter such as humic acids, this combination of recoupled dipolar dephasing and direct polarization at 7-kHz MAS enables selective observation of signals from fused rings that are characteristic of charcoal.  相似文献   

5.
A new magic-angle spinning NMR method for distance determination between unlike spins, where one of the two spins in question is not irradiated at all, is introduced. Relaxation-induced dipolar exchange with recoupling (RIDER) experiments can be performed with conventional double-resonance equipment and utilize the familiar π-pulse trains to recouple the heteronuclear dipolar interaction under magic-angle spinning conditions. Longitudinal relaxation of the passive spin during a delay between two recoupling periods results in a dephasing of the heteronuclear coherence and consequently a dephasing of the magnetization detected after the second recoupling period. The information about the dipolar coupling is obtained by recording normalized dephasing curves in a fashion similar to the REDOR experiment. At intermediate mixing times, the dephasing curves also depend on the relaxation properties of the passive spin, i.e., on single- and double-quantum longitudinal relaxation times for the case of I = 1 nuclei, and these relaxation times can be estimated with this new method. To a good approximation, the experiment does not depend on possible quadrupolar interactions of the passive spin, which makes RIDER an attractive method when distances to quadrupolar nuclei are to be determined. The new method is demonstrated experimentally with 14N and 2H as heteronuclei and observation of 13C in natural abundance.  相似文献   

6.
19F/29Si rotational-echo double-resonance (REDOR) and theta-REDOR NMR techniques have been applied under fast magic-angle spinning to a powder sample of fluoride-containing octadecasil. Efficient dipolar recoupling was observed and the effect of finite pulse lengths was found to be negligible using standard radiofrequency field strengths. Moreover, the determined internuclear distance of the 19F-29Si spin pairs formed by the silicons in the D4R units (T-1 site) and the fluoride anions is in very good agreement with previous REDOR and Hartmann-Hahn cross-polarization measurements. Numerical simulation of the REDOR dephasing curves at both the T-1 and T-2 sites considering all fluoride anions in the infinite solid lattice clearly confirm the X-ray crystal structure of octadecasil. Heteronuclear spin-counting theta-REDOR experiments are found to be very useful to obtain direct insight into the local network of dipolar interactions. Indeed, while 19F-29Si pair-like behavior is confirmed at the T-1 site, multiple dipolar interactions are clearly evidenced at the T-2 site.  相似文献   

7.
8.
A (13)C-observe REDOR experiment is described which allows (13)C-(2)D dipolar couplings to be obtained by a universal dipolar dephasing curve. Previous (13)C-observe REDOR experiments on (13)C-(2)D spin pairs generally relied on numerical simulations to obtain the dipolar coupling. The REDOR experiment described in this article is based on a deuterium composite pulse, and the data analysis eliminates the need for numerical simulations and is the same as the traditional REDOR analysis performed on pairs of spin-12 nuclei. Copyright 2000 Academic Press.  相似文献   

9.
A new two-dimensional heteronuclear multiple-quantum magic-angle spinning (MQ MAS) experiment is presented which combines high resolution for the half-integer quadrupolar nucleus with information about the dipolar coupling between the quadrupolar nucleus and a spin I=1/2 nucleus. Homonuclear MQ coherence is initially created for the half-integer quadrupolar nucleus by a single pulse as in a standard MQ MAS experiment. REDOR recoupling of the heteronuclear dipolar coupling then allows the creation of a heteronuclear multiple-quantum coherence comprising multiple- and single-quantum coherence of the quadrupolar and spin I=1/2 nucleus, respectively, which evolves during t1. Provided that the t1 increment is not rotor synchronized, rotor-encoded spinning-sideband patterns are observed in the indirect dimension. Simulated spectra for an isolated IS spin pair show that these patterns depend on the recoupling time, the magnitude of the dipolar coupling, the quadrupolar parameters, as well as the relative orientation of the quadrupolar and dipolar principal axes systems. Spectra are presented for Na2HPO4, with the heteronuclear 23Na-1HMQ MAS experiments beginning with the excitation of 23Na (spin I=3/2) three-quantum coherence. Coherence counting experiments demonstrate that four- and two-quantum coherences evolve during t1. The heteronuclear spinning-sideband patterns observed for the three-spin H-Na-H system associated with the Na(2) site are analyzed. For an IS2 system, simulated spectra show that, considering the free parameters, the spinning-sideband patterns are particularly sensitive to only, first, the angle between the two IS internuclear vectors and, second, the two heteronuclear dipolar couplings. It is demonstrated that the proton localization around the Na(2) site according to the literature crystal structure of Na2HPO4 is erroneous. Instead, the experimental data is consistent with two alternative different structural arrangements, whereby either there is a deviation of 10 degrees from linearity for the case of two identical Na-H distances, or there is a linear arrangement, but the two Na-H distances are different. Furthermore, the question of the origin of spinning-sidebands in the (homonuclear) MQ MAS experiment is revisited. It is shown that the asymmetric experimental MQ sideband pattern observed for the low-C(Q) Na(2) site in Na(2)HPO4 can only be explained by considering the 23Na chemical shift anisotropy.  相似文献   

10.
REDOR and REDOR-like 13C[19F] and 2H[19F] NMR experiments have been performed on lyophilized whole cells of Staphylococcus aureus. The bacteria were grown to maturity on media containing L-[13C(3)]alanine or L-[methyl-d(3)]alanine, and then complexed with the 4-fluorobiphenyl derivative of chloroeremomycin, an analogue of the widely used antibiotic, vancomycin. The position of the 19F of the drug bound in the bacterial cell wall was determined relative to L-alanine 13C and 2H labels in the peptidoglycan peptide stem that was closest to the fluorinated biphenyl moiety of the drug. These determinations were made by dipolar recoupling methods that do not require an absolute measurement of the REDOR full echo (the signal observed without rotor-synchronized dephasing pulses) of the labels in the peptide stem.  相似文献   

11.
随着固体NMR理论和谱仪硬件技术的不断发展,近年来固体NMR技术在高分子多尺度结构与动力学研究领域中正发挥着越来越重要的作用. 多脉冲及高速魔角旋转(MAS)等质子高分辨技术的发展使得高灵敏度的1H谱可有效地用于高分子化学结构与链间相互作用的检测;基于化学键(J-耦合)相关和通过空间(偶极耦合)相互作用的各种二维异核相关谱NMR新技术,使得复杂高分子的链结构得以严格解析. 基于MAS下同核和异核偶极-偶极相互作用、化学位移各向异性等各向异性相互作用重聚的系列新技术,使得研究者可在采用高分辨1H或13C 检测信号的同时检测准静态下的各向异性相互作用,进而获得与之密切相关的结构和动力学信息. 通过质子偶极滤波技术可有效检测多相聚合物中的界面相与相区尺寸、高分子共混物中的相容性等问题. 在动力学的研究中,通过质子间自旋扩散的有效压制技术和化学位移各向异性的重聚,目前已经可以有效地获取链段上单个化学键的快速局域运动以及链段的超慢分子运动. 上述丰富的多尺度NMR技术可以使研究者在不同空间和时间尺度上对高分子聚合物的微观结构、相分离和动力学行为等进行详细的研究,进而阐明高分子微观结构与宏观性能的关联. 该文以固体NMR中最主要的2类核(1H和13C)的检测技术为主线,简单介绍近年来固体NMR领域的一些最新研究进展及其在高分子结构和动力学研究中的应用.  相似文献   

12.
A method for selectively suppressing the signals of OH and NH protons in (1)H combined rotation and multiple-pulse spectroscopy (CRAMPS) and in (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra is presented. It permits distinction of overlapping CH and OH/NH proton signals, based on the selective dephasing of the magnetization of OH and NH protons by their relatively large (1)H chemical-shift anisotropies. For NH protons, the (14)N-(1)H dipolar coupling also contributes significantly to this dephasing. The dephasing is achieved by a new combination of heteronuclear recoupling of these anisotropies with (1)H homonuclear dipolar decoupling. Since the 180 degrees pulses traditionally used for heteronuclear dipolar and chemical-shift anisotropy recoupling would result in undesirable homonuclear dephasing of proton magnetization, instead the necessary inversion of the chemical-shift Hamiltonian every half rotation period is achieved by inverting the phases of all the pulses in the HW8 multiple-pulse sequence. In the HETCOR experiments, carefully timed (13)C 180 degrees pulses remove the strong dipolar coupling to the nearby (13)C spin. The suppression of NH and OH peaks is demonstrated on crystalline model compounds. The technique in combination with HETCOR NMR is applied to identify the CONH and NH-CH groups in chitin and to distinguish NH and aromatic proton peaks in a peat humin.  相似文献   

13.
We review a variety of recently developed 1H-X heteronuclear recoupling techniques, which rely only on the homonuclear decoupling efficiency of very-fast magic-angle spinning. All these techniques, which are based on the simple rotational-echo, double-resonance (REDOR) approach for heteronuclear recoupling, are presented in a common context. Advantages and possibilities with respect to the complementary application of conventionally X and 1H-inversely detected variants are discussed in relation to the separability and analysis of multiple couplings. We present an improved and more sensitive approach to the determination of 1H-X dipolar couplings by spinning-sideband analysis, termed REREDOR, which is applicable to XHn groups in rigid and mobile systems and bears some similarity to more elaborate separated local-field methods. The estimation of medium-range 1H-X distances by analyzing signal intensities in two-dimensional REDOR correlation spectra in a model-free way is also discussed. More specifically, we demonstrate the possibility of combined distance and angle determination in H-X-H or X-H-X three-spin systems by asymmetric recoupling schemes and spinning-sideband analysis. Finally, an 1H-X correlation experiment is introduced which accomplishes high sensitivity by inverse (1H) detection and is therefore applicable to samples with 15N in natural abundance.  相似文献   

14.
Several existing methods permit measurement of the torsion angles phi, psi and chi in peptides and proteins with solid-state MAS NMR experiments. Currently, however, there is not an approach that is applicable to measurement of psi in the angular range -20 degree to -70 degree, commonly found in alpha-helical structures. Accordingly, we have developed a HCCN dipolar correlation MAS experiment that is sensitive and accurate in this regime. An initial REDOR driven (13)C'--(15)N dipolar evolution period is followed by the C' to C(alpha) polarization transfer and by Lee--Goldburg cross polarization recoupling of the (13)C(alpha)(1)H dipolar interaction. The difference between the effective (13)C(1)H and (13)C(15)N dipolar interaction strengths is balanced out by incrementing the (13)C--(15)N dipolar evolution period in steps that are a factor of R(R approximately omega(CH)/omega(CN)) larger than the (13)C--(1)H steps. The resulting dephasing curves are sensitive to variations in psi in the angular region associated with alpha-helical secondary structure. To demonstrate the validity of the technique, we apply it to N-formyl-[U-(13)C,(15)N] Met-Leu-Phe-OH (MLF). The value of psi extracted is consistent with the previous NMR measurements and close to that reported in diffraction studies for the methyl ester of MLF, N-formyl-[U-(13)C,(15)N]Met-Leu-Phe-OMe.  相似文献   

15.
Rotational-echo double resonance (REDOR) is a magic-angle spinning technique for measuring heteronuclear dipolar couplings. Rotor-synchronized pi pulses recouple the dipolar interaction. The accuracy of a REDOR determination of distance or orientation depends totally on the quality of the dephased (recoupled) and full-echo spectra. We present a scheme for measuring and compensating for the effects of pulse imperfections in REDOR experiments. No assumptions are made about the quality of the pi pulses, and no pulses are added or taken away in implementing the compensation for incomplete REDOR dephasing by imperfect pi pulses.  相似文献   

16.
Measurement of dipolar couplings, chemical shift anisotropies, and quadrupole couplings in oriented media such as liquid crystals are of great importance for extraction of structural parameters in biological macromolecules. Here, we introduce a new technique, SAD-REDOR, that consists of recoupling heteronuclear dipolar couplings in molecules dissolved in a single-domain liquid crystal or other oriented medium through the combined use of magic-angle spinning and rotor-synchronized radiofrequency pulses. This application of the REDOR pulse sequence to oriented media offers several advantages such as selectivity over the type of coupling recovered and tunable scaling of the interaction. The effectiveness of the technique is demonstrated both theoretically and experimentally, using the recently developed polyacrylamide-stabilized Pf1 phage medium and 15N-labeled benzamide as the aligned molecule.  相似文献   

17.
Recent multiple-quantum MAS NMR experiments have shown that a change in the rotor phase (and, hence, in the Hamiltonian) between the excitation and reconversion periods can lead to informative spinning-sideband patterns. However, such "rotor encoding" is not limited to multiple-quantum experiments. Here it is shown that longitudinal magnetization can also be rotor-encoded. Both homonuclear and heteronuclear rotor encoding of longitudinal magnetization (RELM) experiments are performed on dipolar-coupled spin-1/2 systems, and the corresponding sideband patterns in the indirect dimension are analyzed. In both cases, only even-order sidebands are produced, and their intensity distribution depends on the durations of the recoupling periods. In heteronuclear experiments using REDOR-type recoupling, purely dipolar sideband patterns that are entirely free of effects due to the chemical-shielding anisotropy can be generated. Advantages and disadvantages of the heteronuclear RELM experiment are discussed in the context of other methods used to measure heteronuclear dipolar couplings.  相似文献   

18.
REDOR is a solid-state NMR technique frequently applied to biological structure problems. Through incorporation of phosphorothioate groups in the nucleic acid backbone and mono-fluorinated nucleotides, 31P{19F} REDOR has been used to study the binding of DNA to drugs and RNA to proteins through the detection of internuclear distances as large as 13-14 A. In this work, 31P{19F} REDOR is further refined for use in nucleic acids by the combined use of selective placement of phosphorothioate groups and the introduction of nucleotides containing trifluoromethyl (-CF3) groups. To ascertain the REDOR-detectable distance limit between an unique phosphorous spin and a trifluoromethyl group and to assess interference from intermolecular couplings, a series of model compounds and DNA dodecamers were synthesized each containing a unique phosphorous label and trifluoromethyl group or a single 19F nucleus. The dipolar coupling constants of the various 31P and 19F or -CF3 containing compounds were compared using experimental and theoretical dephasing curves involving several models for intermolecular interactions.  相似文献   

19.
Clean MAS observation of 13C-labeled carbons in membrane-bound HIV-1 and influenza fusion peptides was made by using a rotational-echo double-resonance spectroscopy (REDOR) filter of directly bonded 13C-15N pairs. The clean filtering achieved with the REDOR approach is superior to filtering done with sample difference spectroscopy. In one labeling approach, the peptide had labels at a single 13C carbonyl and its directly bonded 15N. The resulting chemical shift distribution of the filtered signal is used to assess the distribution of local secondary structures at the labeled carbonyl. For the influenza peptide, the Leu-2 carbonyl chemical shift distribution is shown to vary markedly with lipid and detergent composition, as well as peptide:lipid ratio, suggesting that the local peptide structure also has a strong dependence on these factors. Because most carboxylic- and amino-labeled amino acids are commercially available, this REDOR approach should have broad applicability to chemically synthesized peptides as well as bacterially synthesized proteins. In a second labeling approach, the HIV-1 fusion peptide had U-13C, 15N labeling over three sequential residues. When a 1.6 ms REDOR dephasing time is used, only backbone 13C signals are observed. The resulting spectra are used to determine spectral linewidths and to assess feasibility of assignment of uniformly labeled peptide.  相似文献   

20.
Proton spin diffusion is widely used to determine domain sizes in heterogeneous organic solids. For an accurate analysis, spin diffusion coefficients are required. However, in most cases they are not directly measured, but instead derived from model systems. The effects of magic-angle spinning (MAS), mobility, or spin-lock fields on spin-diffusion coefficients have also been difficult to quantify. In this work, direct measurement of local (1)H spin-diffusion coefficients in any rigid polymer is achieved in experiments with heteronuclear dephasing of the (1)H magnetization, a mixing time for (1)H spin diffusion, and (13)C detection after cross-polarization. In the presence of (1)H homonuclear decoupling and (13)C 180 degrees-pulse recoupling, each (13)C spin dephases a significant number (3-20) of protons, depending on the dephasing time. For (13)C and other sufficiently dilute heteronuclei, the dephasing of the protons is described by simple spin-pair REDOR curves. As a result, every (13)C nucleus will "burn" a spherical hole of known diameter and profile into the proton magnetization distribution. (1)H spin diffusion into the hole during the mixing time can be monitored and simulated accurately for every resolved (13)C site, with the spin-diffusion coefficient as the only significant unknown parameter. By varying the dephasing time, holes with diameters of 0.4-0.8 nm can be burned into the proton magnetization profile and thus the dependence of the local spin-diffusion coefficients on the proton density or partial mobility can be explored. The effects of transverse or magic-angle spin-lock fields on spin diffusion can be quantified conveniently by this method. Analytical and numerical fits yield short-range spin-diffusion coefficients of 0.2-0.5 nm(2)/ms on the 0.5-nm scale, which is smaller than the value of 0.8 nm(2)/ms for organic solids previously measured on the 10-nm scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号