首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this Letter we analyse the behaviour of the probability density function of the sum of N deterministic variables generated from the triangle map of Casati-Prosen. For the case in which the map is both ergodic and mixing the resulting probability density function quickly concurs with the Normal distribution. However, when the map is weakly chaotic, and fuzzily not mixing, the resulting probability density functions are described by power-laws. Moreover, contrarily to what it would be expected, as the number of added variables N increases the distance to Gaussian distribution increases. This behaviour goes against standard central limit theorem. By extrapolation of our finite size results we preview that in the limit of N going to infinity the distribution has the same asymptotic decay as a Lorentzian (or a q=2-Gaussian).  相似文献   

2.
We investigate the connections between functions of type xn=p(θTzn) and nonlinear maps coupled to non-invertible transformations. These systems can produce unpredictable dynamics. We study the higher-order correlations in the generated sequences. We show that (theoretically) it is possible to construct systems that can generate sequences that constitute a set of statistically independent random variables. We apply the results in the improvement of a two-dimensional coupled map system that has been used in practical applications as e.g. cryptosystems and data compression.  相似文献   

3.
We investigate chaotic phase synchronization (CPS) in three-coupled chaotic oscillator systems. According to the coupling strength and mismatches in the frequencies of these oscillators, we can observe complete CPS where all three oscillators exhibit CPS, and partial CPS where only two oscillators exhibit CPS. When the coupling strength is weakened, we observe a phenomenon that complete CPS among the three oscillators is suddenly disrupted without going through partial CPS. In this case oscillators exhibit quasi-CPS where two oscillators appear to exhibit CPS transiently, and the combination of the two oscillators changes with time. We call this phenomenon CPS switching D. It is revealed that phase fluctuation plays an important role in CPS switching D. It is also shown that the amplitude with a specific structure strengthens the degree of CPS switching. In the present paper, we characterize this CPS switching and discuss its mechanism.  相似文献   

4.
M. Falcioni  L. Rondoni 《Physica A》2007,385(1):170-184
We introduce a high-dimensional symplectic map, modeling a large system, to analyze the interplay between single-particle chaotic dynamics and particles interactions in thermodynamic systems. We study the initial growth of the Boltzmann entropy, SB, as a function of the coarse-graining resolution (the late stage of the evolution is trivial, as the system is subjected to no external drivings). We show that a characteristic scale emerges, and that the behavior of SB vs t, at variance with the Gibbs entropy, does not depend on the resolution, as far as it is finer than this scale. The interaction among particles is crucial to achieve this result, while the rate of entropy growth, in its early stage, depends essentially on the single-particle chaotic dynamics. It is possible to interpret the basic features of the dynamics in terms of a suitable Markov approximation.  相似文献   

5.
Forbidden ordinal patterns are ordinal patterns (or rank blocks) that cannot appear in the orbits generated by a map taking values on a linearly ordered space, in which case we say that the map has forbidden patterns. Once a map has a forbidden pattern of a given length L0, it has forbidden patterns of any length LL0 and their number grows superexponentially with L. Using recent results on topological permutation entropy, in this paper we study the existence and some basic properties of forbidden ordinal patterns for self-maps on n-dimensional intervals. Our most applicable conclusion is that expansive interval maps with finite topological entropy have necessarily forbidden patterns, although we conjecture that this is also the case under more general conditions. The theoretical results are nicely illustrated for n=2 both using the naive counting estimator for forbidden patterns and Chao’s estimator for the number of classes in a population. The robustness of forbidden ordinal patterns against observational white noise is also illustrated.  相似文献   

6.
We extend a theory of first order ? corrections to Gutzwiller’s trace formula for systems with a smooth potential to systems with discrete symmetries and, as an example, apply the method to the two-dimensional hydrogen atom in a uniform magnetic field. We exploit the C4v-symmetry of the system in the calculation of the correction terms. The numerical results for the semiclassical values will be compared with values extracted from exact quantum mechanical calculations. The comparison shows an excellent agreement and demonstrates the power of the ? expansion method.  相似文献   

7.
We study the relation between the centro-affine geometry of star-shaped planar curves and the projective geometry of parametrized maps into RP1. We show that projectivization induces a map between differential invariants and a bi-Poisson map between Hamiltonian structures. We also show that a Hamiltonian evolution equation for closed star-shaped planar curves, discovered by Pinkall, has the Schwarzian KdV equation as its projectivization. (For both flows, the curvature evolves by the KdV equation.) Using algebro-geometric methods and the relation of group-based moving frames to AKNS-type representations, we construct examples of closed solutions of Pinkall’s flow associated with periodic finite-gap KdV potentials.  相似文献   

8.
We study the nonlinear dynamics of DNA which takes into account the twist-opening interactions due to the helicoidal molecular geometry. The small amplitude dynamics of the model is shown to be governed by a solution of a set of coupled nonlinear Schrödinger equations. We analyze the modulational instability and solitary wave solution in the case. On the basis of this system, we present the condition for modulation instability occurrence and attention is paid to the impact of the backbone elastic constant K. It is shown that high values of K extend the instability region. Through the Jacobian elliptic function method, we derive a set of exact solutions of the twist-opening model of DNA. These solutions include, Jacobian periodic solution as well as kink and kink-bubble solitons.  相似文献   

9.
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.  相似文献   

10.
We study the dynamical behavior of a single vehicle through the sequence of traffic lights controlled by the logistic map. The phase shift of traffic lights is determined by the logistic map and varies from signal to signal. The nonlinear dynamic model of the vehicular motion is presented by the nonlinear map including the logistic map. The vehicle exhibits the very complex behavior with varying both cycle time and logistic-map parameter a. For a>3, the dependence of arrival time on the cycle time becomes smoother and smoother with increasing a. The dependence of vehicular motion on parameter a is clarified.  相似文献   

11.
Dequan Li 《Physics letters. A》2008,372(4):387-393
This Letter introduces a new chaotic member to the three-dimensional smooth autonomous quadratic system family, which derived from the classical Lorenz system but exhibits a three-scroll chaotic attractor. Interestingly, the two other scrolls are symmetry related with respect to the z-axis as for the Lorenz attractor, but the third scroll of this three-scroll chaotic attractor is around the z-axis. Some basic dynamical properties, such as Lyapunov exponents, fractal dimension, Poincaré map and chaotic dynamical behaviors of the new chaotic system are investigated, either numerically or analytically. The obtained results clearly show this is a new chaotic system and deserves further detailed investigation.  相似文献   

12.
We investigate numerically the chaotic sea of the complete Fermi-Ulam model (FUM) and of its simplified version (SFUM). We perform a scaling analysis near the integrable to non-integrable transition to describe the average energy as function of time t and as function of iteration (or collision) number n. When t is employed as independent variable, the exponents of FUM and SFUM are different. However, when n is used, the exponents are the same for both FUM and SFUM. In the collision number analysis, we present analytical arguments supporting the values of the exponents related to the control paramenter and to the initial velocity. We describe also how the scaling exponents obtained by using t as independent variable are related to the ones obtained with n. In contrast to SFUM, the average energy in FUM saturates for long times. We discuss the origin of the observed differences and similarities between FUM and its simplified version.  相似文献   

13.
Ernest Fontich 《Physica A》2009,388(9):1867-1878
We present a simple mean field model to analyze the dynamics of competition between two populations of replicators in terms of the degree of intraspecific cooperation (i.e., autocatalysis) in one of these populations. The first population can only replicate with Malthusian kinetics while the second one can reproduce with Malthusian or autocatalytic replication or with a combination of both reproducing strategies. The model consists of two coupled, nonlinear, autonomous ordinary differential equations. We investigate analytically and numerically the phase plane dynamics and the bifurcation scenarios of this ecologically coupled system, focusing on the outcome of competition for several degrees of intraspecific cooperation, σ, in the second population of replicators. We demonstrate that the dynamics of both populations can not be governed by a limit cycle, and also that once cooperation is considered, the topology of phase space does not allow for coexistence. Even for low values of the degree of intraspecific cooperation, for large enough autocatalytic replication rates, the second population of replicators is able to outcompete the first one, having a wide basin of attraction in state space. We characterize the same power law dependence between the outcompetition extinction times, τ, and the degree of intraspecific cooperation for both populations, given by τciσ−1. Our results suggest that, under some kinetic conditions, the appearance of autocatalysis might be favorable in a population of replicators growing with Malthusian kinetics competing with another population also reproducing exponentially.  相似文献   

14.
Considering the Gross-Pitaevskii integral equation we are able to formally obtain an analytical solution for the order parameter Φ(x) and for the chemical potential μ as a function of a unique dimensionless non-linear parameter Λ. We report solutions for different ranges of values for the repulsive and the attractive non-linear interactions in the condensate. Also, we study a bright soliton-like variational solution for the order parameter for positive and negative values of Λ. Introducing an accumulated error function we have performed a quantitative analysis with respect to other well-established methods as: the perturbation theory, the Thomas-Fermi approximation, and the numerical solution. This study gives a very useful result establishing the universal range of the Λ-values where each solution can be easily implemented. In particular, we showed that for Λ<−9, the bright soliton function reproduces the exact solution of GPE wave function.  相似文献   

15.
The Kaplan-Yorke dimension can be derived using a linear interpolation between an h-dimensional Lyapunov exponent λ(h)>0 and an h+1-dimensional Lyapunov exponent λ(h+1)<0. In this Letter, we use a polynomial interpolation to obtain generalized Lyapunov dimensions and study the relationships among them for higher-dimensional systems.  相似文献   

16.
It was proposed about a decade ago [M.G.E. da Luz, A.S. Lupu-Sax, E.J. Heller, Phys. Rev. E 56 (1997) 2496] a simple approach for obtaining scattering states for arbitrary disconnected open or closed boundaries C, with different boundary conditions. Since then, the so called boundary wall method has been successfully used to solve different open boundary problems. However, its applicability to closed shapes has not been fully explored. In this contribution we present a complete account of how to use the boundary wall to the case of billiard systems. We review the general ideas and particularize them to single connected closed shapes, assuming Dirichlet boundary conditions for the C’s. We discuss the mathematical aspects that lead to both the inside and outside solutions. We also present a different way to calculate the exterior scattering S matrix. From it, we revisit the important inside-outside duality for billiards. Finally, we give some numerical examples, illustrating the efficiency and flexibility of the method to treat this type of problem.  相似文献   

17.
In this paper, we study in detail, both analytically and numerically, the dynamical properties of the triangle map, a piecewise parabolic automorphism of the two-dimensional torus, for different values of the two independent parameters defining the map. The dynamics is studied numerically by means of two different symbolic encoding schemes, both relying on the fact that it maps polygons to polygons: in the first scheme we consider dynamically generated partitions made out of suitable sets of disjoint polygons, in the second we consider the standard binary partition of the torus induced by the discontinuity set. These encoding schemes are studied in detail and shown to be compatible, although not equivalent. The ergodic properties of the triangle map are then investigated in terms of the Markov transition matrices associated to the above schemes and furthermore compared to the spectral properties of the Koopman operator in L2(T2). Finally, a stochastic version of the triangle map is introduced and studied. A simple heuristic analysis of the latter yields the correct statistical and scaling behaviours of the correlation functions of the original map.  相似文献   

18.
Dynamical behavior of a class of nonhyperbolic discrete systems are considered. These systems are generated by iterating planar maps that are piecewise isometries, and they arise as mathematical models for signal processing, digital filters and modulator dynamics. Planar piecewise isometries may be discontinuous and/or non-invertible. First, the authors consider attraction caused by discontinuity in planar piecewise isometries. Namely, they have shown that the maximal invariant set can induce an invariant measure, and all the Lyapunov exponents are zero under this invariant measure. Second, they discuss various definitions of global attractors and their existence and uniqueness for discontinuous maps, and introduce a few examples in which the attractors are created due to discontinuity. Third, they study the relation between invariance and invertibility for various nonhyperbolic maps, and finally they investigate decomposability of global attractors for certain nonhyperbolic systems.  相似文献   

19.
We discuss strange nonchaotic attractors (SNAs) in addition to chaotic and regular attractors in a quasiperiodically driven system with time delays. A route and the associated mechanism are described for a special type of attractor called strange-nonchaotic-attractor-like (SNA-like) through T2 torus bifurcation. The type of attractor can be observed in large parameter domains and it is easily mistaken for a true SNA judging merely from the phase portrait, power spectrum and the largest Lyapunov exponent. SNA-like attractor is not strange and has no phase sensitivity. Conditions for Neimark-Sacker bifurcation are obtained by theoretical analysis for the unforced system. Complicated and interesting dynamical transitions are investigated among the different tongues.  相似文献   

20.
Eun-Ju Hwang 《Physics letters. A》2009,373(22):1935-1939
This Letter presents fuzzy model-based robust tracking control for the adaptive synchronization of uncertain chaotic systems. Fuzzy model and adaptive algorithm are employed to present the unknown chaotic systems. H and sliding mode control are combined to construct a robust tracking controller. The incorporated H controller can attenuate the external disturbance and approximation error to any prescribed level. The proposed scheme guarantees that all the variables are bounded and the tracking error is compensated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号