首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes become stained from coupling with foreign molecules, especially from adsorbing gas molecules. The charge exchange, which is due to the orbital hybridization, occurred in the stained carbon nanotube induces electrical dipoles that consequently vary the electrical conduction of the nanotube. We propose a microscopic model to evaluate the electrical current variation produced by the induced electrical dipoles in a stained zigzag carbon nanotube. It is found that stronger orbital hybridization strengths and larger orbital energy differences between the carbon nanotube and the gas molecules help increasing the induced electrical dipole moment. Compared with the stain-free carbon nanotube, the induced electrical dipoles suppress the current in the nanotube. In the carbon nanotubes with induced dipoles the current increases as a result of increasing orbital energy dispersion via stronger hybridization couplings. In particular, at a fixed hybridization coupling, the current increases with the bond length for the donor-carbon nanotube but reversely for the acceptor-carbon nanotube.  相似文献   

2.
M.D. Ganji 《Physics letters. A》2008,372(18):3277-3282
The adsorption of CO2 on the single-walled tungsten carbide nanotubes has been investigated employing density functional theory method. The center of a hexagon of tungsten and carbon atoms in sites on tungsten carbide nanotube surfaces is the most stable adsorption site for CO2 molecule, with a binding energy of −1.68 eV (−38.72 kcal/mol) and a WO binding distance of 1.95 Å. Furthermore, the adsorption of CO2 on the single-walled carbon nanotubes has been investigated. Our first-principles calculations predict that the CO2 adsorptive capacity of tungsten carbide nanotubes is about quadruple that of carbon nanotubes. This might have potential for greenhouse gas detection and bioremediation.  相似文献   

3.
The hydrogen chemical adsorption on a single-walled carbon nanotube (6, 6) has been studied by quantum-chemical computer simulation. Different variants of hydrogen coverage of the nanotube have been considered, and the dependences of the adsorption energy and the nanotube strain energy on the coverage density have been found. In addition, the adsorption has been considered on both the outer and inner surfaces of the nanotube wall. It has been established that some adsorption conformations are unstable, which leads to fracture of the nanotubes.  相似文献   

4.
Gas sensing is one of the most promising applications for graphene. Using molecular dynamics simulation method, adsorption isotherm of xenon (Xe) gas on defected and perfect graphene is studied in order to investigate sensing properties of graphene for Xe gas. In this method, first generation of Brenner many-body potential is used to simulate the interaction of carbon–carbon (C) atoms in graphene, and Lennard–Jones two-body potential is used to simulate interaction of Xe–Xe and Xe–C atoms. In the simulated systems, adsorption coverage, radial distribution function, heat of adsorption, binding energy and specific heat capacity at constant volume are calculated for several temperatures between 90 K and 130 K, and various pressures. It was found that both of the defected and perfect graphene could be introduced as very good candidates for adsorption of Xe gas.  相似文献   

5.
A theoretical model for the growth of single-wall carbon nanotubes produced by metal-catalyzed decomposition of hydrocarbons and fullerenes is presented. The growth process is treated as a thermodynamic equilibrium between carbon in the gas phase and carbon in the nanotube. The minimum possible nanotube diameters based on several published experimental conditions are calculated by combining the free energy of the reaction with an equation derived from elastic theory. The model predicts the possibility of generating nanotubes with extremely small diameters that are smaller than in the corresponding experiments. Received: 18 July 2001 / Accepted: 19 November 2001 / Published online: 4 March 2002  相似文献   

6.
We studied the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes based on first-principle calculations. The results show that the encapsulating process of SiNT is exothermic in (9,9) carbon nanotube while endothermic in (8,8) and (7,7) carbon nanotubes. When the SiNT is inserted into (9,9) carbon nanotube, the insertion energy is about 0.09 eV. Energy band of SiNT@(9,9) nanotube is not distorted greatly compared with the superposition of bands of isolated SiNT and (9,9) carbon nanotube. Especially, a parabolic band occurs near the Fermi level of energy band in SiNT@(7,7) nanotube. Such a band could be a nearly free electronic state originating from carbon nanotube. Moreover, we discuss the variation of total energy as the SiNT rotates around its axis inside carbon nanotubes.  相似文献   

7.
戴伟  肖明  李志浩  唐永建 《物理学报》2012,61(1):16801-016801
运用巨正则Monte Carlo方法, 模拟了H2在自由扩散状态下及碳纳米管吸附状态下的分布, 对H2的自由扩散和吸附状态进行了对比研究. 研究表明: 77 K和2 MPa下, (30, 30)扶手椅型碳纳米管质量储氢密度为3.74%, 77 K和10 MPa下, 质量储氢密度为7.4%. 吸附状态的H2分子主要汇聚在碳纳米管内外两个壁面. 关键词: 储氢 碳纳米管 巨正则Monte Carlo  相似文献   

8.
We investigated the interactions between two different geometrical configurations of single-walled carbon nanotubes and boron atoms using first-principle calculations within the framework of the density functional theory. With the aid of ab initio calculations, we introduced a new type of toxic gas sensor that can detect the presence of CO, NO and H2 molecules. We proved that the dopant concentration on the surface of the nanotube plays a crucial role in the sensitivity of this device. Furthermore, we showed that small concentrations of dopants can modify the transport and electronic properties of the single-walled carbon nanotube and can lend metallic properties to the nanotube. Band-gap narrowing occurs when the nanotube is doped with boron atoms. The emerged new energy level near the Fermi level upon boron doping clearly indicates the coupling between the p orbital of the boron atom and the large p bond of the carbon nanotube. We also predicted a weak hybridization between the boron atoms and the nanotube for the valence-band edge states; this weak coupling leads to conducting states around the band gap.  相似文献   

9.
The van der Walls interaction between a carbon nanotube sheet (CNTS) and a rare gas atom, is studied using both atomistic and continuum approaches. We present analytical expressions for the van der Waals energy of continuous nanotubes interacting with a rare gas atom. It is found that the continuum approach does not properly treat the effect of atomistic configurations on the energy surfaces. The energy barriers are small as compared to the thermal energy, which implies the free motion above the CNTS in heights about one nanometer. In contrast to the energy surface of a graphene sheet, the honeycomb lattice structure in the energy surface of a CNTS is imperceivable. Defects alter the energy surface which therefore influence the gas adsorption mechanism.  相似文献   

10.
The effect of oxygenation on the electronic properties of semiconducting carbon nanotubes is studied from first principles. The O2 is found to bind to a single-walled nanotube with an adsorption energy of about 0.25 eV and to dope semiconducting nanotubes with hole carriers. Weak hybridization between carbon and oxygen is predicted for the valence-band edge states. The calculated density of states shows that weak coupling leads to conducting states near the band gap. The oxygen-induced gap closing for large-diameter semiconducting tubes is discussed as well. The influence of oxygen on the magnetic property is also addressed through a spin-polarized calculation and compared to experiment.  相似文献   

11.
Utilising molecular dynamics simulations, the hydrogen molecules adsorption isotherms of the (8,?0) palladium decorated single-walled carbon nanotube (SWNT) were obtained. The hydrogen adsorption was studied on the external, interstial and internal surfaces of the SWNT bundle at several temperatures ranging from 77 to 400?K. The results were compared with the bare single-walled carbon nanotube bundle under the same conditions. The decorated carbon nanotube bundle hydrogen adsorption was significantly higher than that of the bare one. The hydrogen desorption and readsorption were studied using temperature as the readsorption/desorption variable. The rate constants were calculated for the hydrogen desorption at different temperatures. The calculated decorated SWNT bundle hydrogen desorption activation energy was higher than that for the bare SWNT bundle. The calculated activation energies for the hydrogen desorption in both nanotube bundles specified the temperature dependency of hydrogen desorption.  相似文献   

12.
甲硝唑(MNZ)的滥用对水环境造成了严重的污染.本文采用第一性原理计算的方法,研究了单壁碳纳米管(CNT)和Fe掺杂碳纳米管(Fe-CNT)对MNZ的吸附作用.分别计算了单壁CNT和Fe-CNT与MNZ的吸附结构、吸附能、电子轨道、电荷转移、态密度等.结果表明原始CNT对MNZ吸附作用较弱,而Fe-CNT与MNZ的相互作用明显增强.因此,Fe-CNT有望成为吸附水中污染物MNZ的候选材料.  相似文献   

13.
We investigate and discuss the adsorption of a few amino acids on (3,3) carbon nanotubes and on graphite sheets through calculations within density functional theory. Results show weak binding of the biomolecules on both substrates, but through generally favourable adsorption pathways. Zwitterion adsorption through the charged amine and carboxylate groups are bound stronger to the nanotube surface in comparison to their nonionic counterparts, as well as on histidine, phenylalanine, and cysteine side chain groups fixed in specific orientations. Binding strengths on graphite suggest dissimilar trends for amino acid interactions with increasing nanotube diameter.  相似文献   

14.
梁君武  胡慧芳  韦建卫  彭平 《物理学报》2005,54(6):2877-2882
用密度泛函理论计算了氧分子物理吸附在半导体型单壁碳纳米管的束缚能,能带结构和吸收 光谱.计算结果指出氧分子吸附在碳纳米管表面的优先位置,研究发现氧吸附对碳管的电子 输运特性和吸收光谱有着重要的影响,并对光致氧分子解吸附的现象进行了理论分析. 关键词: 单壁碳纳米管 氧物理吸附 能带结构 吸收光谱  相似文献   

15.
Field emission of electrons from multiwall carbon nanotubes has been investigated by field emission microscopy (FEM) in ultra-high vacuum. A carbon nanotube, at the end of which at least six pentagons exist to make a closed cap, gives an FEM pattern consisting of bright pentagonal rings if the nanotube surface is clean. Adsorption of residual gas molecules is observed as bright spots in the FEM pattern, giving rise to an abrupt increase in the emission current. Adsorbed molecules seem to reside preferentially on the pentagonal sites where the strong electric field is concentrated. A heat cleaning of the emitter at about 1300 K allows the molecules to desorb, and the nanotube emitter recovers its original clean surface. It has been revealed that the adsorption and desorption of gas molecules are responsible for stepwise fluctuation of the emission current.  相似文献   

16.
Density functional theory calculations were used to study the titanium (Ti) adsorption on perfect and defected (4, 0) BC3 nanotubes, considering Stone–Wales and vacancy defects. The binding energy values for these nanotubes were larger than the corresponding values for carbon nanotubes. The charge transfer from the Ti atom to nanotube was observed for all systems studied. The most exothermic binding process occurred for the Ti adsorption on a native VB defect, which showed minimum structural deformation with respect to a perfect BC3 tube. In the case of a nanotube with a reconstructed carbon vacancy, the adsorption of Ti generated a half-metallic anti-ferromagnet. The results obtained in this paper are relevant for spintronics and hydrogen adsorption applications.  相似文献   

17.
Using a unified macroscopic QED formalism, an integral equation for the van der Waals energy of a two-level atomic system near a carbon nanotube is derived. The equation is valid for both strong and weak atom-vacuum field coupling. By solving it numerically, the inapplicability of weak coupling-based van der Waals interaction models in the close vicinity of the nanotube surface is demonstrated. It is also shown that encapsulation of doped atoms into the nanotube is energetically more favorable than their outside adsorption by the nanotube surface.  相似文献   

18.
We report the results of our first-principles study based on density functional theory on the interaction of alkanethiols with both defected and defect-free single-walled carbon nanotube (SWCNT). The adsorption energies are calculated for various configurations such as alkanethiol molecule approaching to defect sites heptagon, hexagon, and pentagon in defective tube, and another case where the alkanethiol approaching to hexagon in defect-free nanotube. The calculated results showed that alkanethiols are rather strongly bound to the outer surface of both the defected and defect-free carbon nanotubes with the binding energy of about −50.58 kcal/mol, consistent with the experimental result. We also find that alkanethiols prefer to be adsorbed on the hexagon ring site of defect-free nanotube. Furthermore, the effect of alkanethiols chain length on the adsorption of alkanethiols on carbon nanotubes has been investigated, and the obtained results reveal that the longer alkanethiols bind rather more strongly to the nanotube surface.  相似文献   

19.
Carbon nanotubes can be viewed as a complete tube structure formed from graphitelayers and they have long been a research focus since the discovery in 1991[1,2]. Due totheir distinct atomic and electronic structures, carbon nanotubes, especially single-walled carbon nanotubes (SWNTs), have got into the frontier of the nanoelectronics andthe molecular electronics[3], in addition to their applications in the field of material sci-ence. After successfully manufacturing model electronic devices[4…  相似文献   

20.
The effect of gas molecule adsorption is investigated on the density of states of (9,0) zigzag boron nitride nanotube within a random tight-binding Hamiltonian model. The Green function approach and coherent potential approximation have been implemented. The results show that the adsorption of carbon dioxide gas molecules by boron atoms only leads to a donor type semiconductor while the adsorption by nitrogen atoms only leads to an acceptor. Since the gas molecules are adsorbed by both boron and nitrogen atoms, a reduction of the band gap is found. In all cases, increasing the gas concentration causes an increase in the height of the peaks in the band gap. This is due to an increasing charge carrier concentration induced by adsorbed gas molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号