首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of a couple stress fluid saturated horizontal porous layer heated from below and cooled from above when the fluid and solid phases are not in local thermal equilibrium is investigated. The Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the solid and fluid phases separately. The linear stability theory is employed to obtain the condition for the onset of convection. The effect of thermal non-equilibrium on the onset of convection is discussed. It is shown that the results of the thermal non-equilibrium Darcy model for the Newtonian fluid case can be recovered in the limit as couple stress parameter C→0. We also present asymptotic analysis for both small and large values of the inter phase heat transfer coefficient H. We found an excellent agreement between the exact solutions and asymptotic solutions when H is very small.  相似文献   

2.
In this Letter, we propose a simple approach using HAM to obtain accurate totally analytical solution of viscous fluid flow over a flat plate. First, we show that the solution obtained using HPM is not a reliable one; moreover, we show that HPM is only a special case of HAM and its basic assumptions are restrictive rather than useful. We set ?=−1 for the case of comparison of our results to those obtained using HPM. Afterwards, we introduce an extra auxiliary parameter and a straightforward approach to find best values of this auxiliary parameter which plays a prominent role in the frame of our solution and makes it more convergent in comparison to previous works.  相似文献   

3.
The solid solution series (2ZnX)x (CuInX2)1−x (X=S, Se, Te) were studied by the combination of laboratory and synchrotron X-ray and by neutron powder diffraction. Within the homologous series the tetragonal distortion ¼-u increases in the sequence S→Se→Te whereas the tetragonal deformation η=c/2a decreases. Besides that, with increasing 2ZnX content in CuInX2 the anion position parameter u increases as expected. The cation site occupancy in the chalcopyrite type phase of single phase tetragonal samples was obtained by Rietveld analysis of the neutron diffraction data. A non-statistic Zn distribution could be deduced for all three systems. The high temperature in situ diffraction experiments with synchrotron radiation on CuInX2 powder samples revealed the Cu-In anti-site occupation as the driving force of the temperature dependent phase transition from the chalcopyrite to the zinc-blende type structure.  相似文献   

4.
The heat transfer and air flow around an unconfined heated rotating circular cylinder is investigated numerically for varying rotation rates (α = 0–6) in the Reynolds number range of 20–200. The numerical calculations are carried out by using a finite volume method based commercial computational fluid dynamics solver FLUENT. The successive changes in the flow pattern are studied as a function of the rotation rate. Suppression of vortex shedding occurs as the rotation rate increases (α > 2). A second kind of instability appears for higher rotation speed where a series of counter-clockwise vortices is shed in the upper shear layer. The rotation attenuates the secondary instability and increases the critical Reynolds number for the appearance of this instability. Besides, time-averaged (lift and drag coefficients and Nusselt number) results are obtained and compared with the literature data. A good agreement has been obtained for both the local and averaged values.  相似文献   

5.
Chun-Him Chan  P.M. Hui 《Physica A》2008,387(12):2919-2925
We study the time evolution of cooperation in a recently proposed N-person evolutionary snowdrift game, by focusing on the details of the evolutionary dynamics. It is found that the analytic solution for the equilibrium fraction of cooperators as given previously by the replicator dynamics stems from a balance between the terms: the cost to contribute to a common task and the risk in refusing to participate in a common task. Analytic expressions for these two terms are given, and their magnitudes are studied over the whole range of parameter space. Away from equilibrium, it is the imbalance between these terms that drives the system to equilibrium. A continuous time first-order differential equation for the degree of cooperation is derived, for arbitrary interacting group size N and cost-to-benefit ratio. Analytic solutions to the time evolution of cooperation for the cases of N=2 and N=3 are obtained, with results in good agreement with those obtained by numerical simulations. For arbitrary N, numerical solutions to the equation give the time evolution of cooperation, with the long time limit giving the equilibrium fraction of cooperators.  相似文献   

6.
T. Hayat  M. Sajid 《Physics letters. A》2008,372(18):3264-3273
This Letter looks at the rotating flow of a second grade fluid past a porous shrinking surface. The fluid is electrically conducting in the presence of a constant applied magnetic field. The governing partial differential equations are first reduced into ordinary differential equations and then solved by homotopy analysis method (HAM). Convergence of the series solution is shown explicitly. In addition, the obtained results are illustrated graphically to indicate the effects of the pertinent physical parameters.  相似文献   

7.
Ferrofluid spin-up flow is studied within a sphere subjected to a uniform rotating magnetic field from two surrounding spherical coils carrying sinusoidally varying currents at right angles and 90° phase difference. Ultrasound velocimetry measurements in a full sphere of ferrofluid shows no measureable flow. There is significant bulk flow in a partially filled sphere (1-14 mm/s) of ferrofluid or a finite height cylinder of ferrofluid with no cover (1-4 mm/s) placed in the spherical coil apparatus. The flow is due to free surface effects and the non-uniform magnetic field associated with the shape demagnetizing effects. Flow is also observed in the fully filled ferrofluid sphere (1-20 mm/s) when the field is made non-uniform by adding a permanent magnet or a DC or AC excited small solenoidal coil. This confirms that a non-uniform magnetic field or a non-uniform distribution of magnetization due to a non-uniform magnetic field are causes of spin-up flow in ferrofluids with no free surface, while tangential magnetic surface stress contributes to flow in the presence of a free surface.Recent work has fitted velocity flow measurements of ferrofluid filled finite height cylinders with no free surface, subjected to uniform rotating magnetic fields, neglecting the container shape effects which cause non-uniform demagnetizing fields, and resulting in much larger non-physical effective values of spin viscosity η′∼10−8−10−12 N s than those obtained from theoretical spin diffusion analysis where η′≤10−18 N s. COMSOL Multiphysics finite element computer simulations of spherical geometry in a uniform rotating magnetic field using non-physically large experimental fit values of spin viscosity η′∼10−8−10−12 N s with a zero spin-velocity boundary condition at the outer wall predicts measureable flow, while simulations setting spin viscosity to zero (η=0) results in negligible flow, in agreement with the ultrasound velocimetry measurements. COMSOL simulations also confirm that a non-uniform rotating magnetic field or a uniform rotating magnetic field with a non-uniform distribution of magnetization due to an external magnet or a current carrying coil can drive a measureable flow in an infinitely long ferrofluid cylinder with zero spin viscosity (η=0).  相似文献   

8.
In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s−1. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors ( radius) over an appropriate range of magnetic fluid concentrations (0.002-0.01 solid volume fraction) and nanoparticle radii (1-10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the transverse rotating magnetic field in the presence of B0 are investigated to demonstrate the effect of Ω, the rotating field frequency, and the magnetic field amplitude on the fluid suspension magnetization. The transverse magnetization due to the rotating transverse field shows strong dependence on the characteristic time constant of the fluid suspension, τ. The analysis shows that as the rotating field frequency increases so that Ωτ approaches unity, the transverse fluid magnetization vector is significantly non-aligned with the applied rotating field and the magnetization's magnitude is a strong function of the field frequency. In this frequency range, the fluid's transverse magnetization is controlled by the applied field which is determined by the operator. The phenomenon, which is due to the physical rotation of the magnetic nanoparticles in the suspension, is demonstrated analytically when the nanoparticles are present in high concentrations (1-3% solid volume fractions) more typical of hyperthermia rather than in clinical imaging applications, and in low MRI field strengths (such as open MRI systems), where the magnetic nanoparticles are not magnetically saturated. The effect of imposed Poiseuille flow in a planar channel geometry and changing nanoparticle concentration is examined. The work represents the first known attempt to analyze the dynamic behavior of magnetic nanoparticles in the MRI environment including the effects of the magnetic nanoparticle spin-velocity. It is shown that the magnitude of the transverse magnetization is a strong function of the rotating transverse field frequency. Interactive fluid magnetization effects are predicted due to non-uniform fluid magnetization in planar Poiseuille flow with high nanoparticle concentrations.  相似文献   

9.
The steady flow of an incompressible viscous fluid due to a rotating disk in a nanofluid is studied. The transformed boundary layer equations are solved numerically by a finite difference scheme, namely the Keller-box method. Numerical results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction parameter φ and suction/injection parameter h0. Two models for the effective thermal conductivity of the nanofluid, namely the Maxwell-Garnett model and the Patel model, are considered. It is found that for the Patel model, the heat transfer rate at the surface increases for both suction and injection, whereas different behaviors are observed for the Maxwell-Garnett model, i.e. increasing the values of φ leads to a decrease in the heat transfer rate at the surface for suction, but increases for injection. The results of this study can be used in the design of an effective cooling system for electronic components to help ensure effective and safe operational conditions.  相似文献   

10.
Positron beam experiments have been performed for the first time on a self-supporting polymethyl metacrylate (PMMA) film of 310 nm-thick made by spin coating. The positronium (Ps) emission from the PMMA surface is studied as a function of the positron implantation energy by using Doppler profile spectroscopy and Compton-to-peak ratio analysis. When the sample and the Ge-detector are perpendicular to the positron beam, the emission of para-positronium (p-Ps) is detected as a narrow central peak. By rotating the sample 45° with respect to the beam, the emission of p-Ps is detected as a blue-shifted fly-away peak. The bulk Ps fraction, the efficiency for the emission of Ps by picking up an electron from the surface, and the diffusion lengths of positrons (thermal and or epithermal), p-Ps and ortho-positronium (o-Ps) are obtained.  相似文献   

11.
A strong optogalvanic effect has been observed in a negative glow of a miniature neon discharge lamp using tunable pulse dye laser pumped by a copper vapor laser. A comparative study on temporal evolution of optogalvanic signal in a positive and negative dynamic resistance region of the discharge is described. Dye laser beam was tuned to various neon transitions 1si → 2pj (Paschen notations) within 570-617 nm wavelength range. Anomalous behavior of optogalvanic signal was observed at 588.2 nm for (1s5 → 2p2) neon transition at low discharge current (<220 μA). This anomalous behavior is the attributes of damped oscillations of optogalvanic signal that correlate with negative dynamic resistance (dV/di < 0) of the discharge. Penning ionization at low discharge current and small energy mismatch is assumed to be the main cause of the negative dynamic resistance. Penning ionization process has been explained by resonantly ionizing energy transfer via collisions between neon buffer gas atoms in the lowest metastable state (1s5) and electrode sputtered atoms in ground state using their partial energy level diagram.  相似文献   

12.
The dynamic phase transformation and structure of rapidly solidified Fe1−xCoxSi2 (0.02?x?0.06) thermoelectric materials were in situ investigated under high temperatures and high pressures by energy dispersive X-ray diffraction using synchrotron radiation. The FeSi2 alloys which solidified as α-Fe2Si5 and ε-FeSi eutectic structures, were transformed to the semiconducting β-FeSi2 phase upon heating by the main reaction α+ε→β and the subsidiary reaction α→β+Si. The low heating rates and Co contents were found to be beneficial for the β phase formation. The decomposition temperature of β→α+ε was weakly dependent on heating rate, but significantly suppressed by the high pressures.  相似文献   

13.
Thermodynamic properties of Nanocrystalline (NC) materials are essentially different from the conventional coarse-grained materials (with the same chemical composition). The role of grain boundary is very important in the characterization of thermodynamic functions and thermal properties of NC materials when the grain size is less than 100 nm. Therefore, the traditional thermodynamics being applied for coarse-grained materials is not applicable for NC materials. In this study, Quasiharmonic Debye Approximation (QDA) and Equation of State (EOS) methods are used to calculate the Gibbs free energy in NC Fe. Since the Gibbs free energy for Fe, predicted by EOS and QDA methods, is inaccurate (especially at temperatures higher than the ambient temperature), a term called as ΔGExcess is proposed to modify the results. Thus, the Modified QDA (MQDA) and Modified EOS (MEOS) methods are introduced for this purpose. Thereafter, the change in the Gibbs free energy for γ-Fe to α-Fe phase transformation (ΔGγ→α) via the grain size is calculated by MQDA and MEOS methods. The results obtained by the two methods are also compared and discussed. Finally, the critical grain size, at which ΔGγ→α=0, can be estimated at different temperatures, is found to increase with increasing temperature.  相似文献   

14.
I.V. Krasnov 《Physics letters. A》2009,373(26):2291-2297
The solution of the problem of all-optical (nonmagnetic) confinement of ultracold electron-ion neutral plasma based on selective action on plasma ions with quantum transition J=1→J=0 of so-called rectified radiation forces in a strong nonmonochromatic light field is suggested. The presented scheme of the three-dimensional dissipative optical trap for plasma allows one to obtain long-lived ultracold plasma with controlled characteristics. The lifetime of the ultracold plasma in such a trap may exceed considerably (by orders of magnitude) the time of free plasma expansion and the lifetime in the (earlier proposed) optical molasses for the ultracold plasma.  相似文献   

15.
Thin films of ZrO2 loaded with 10, 30 and 50 mol% Sm were prepared by a photochemical method using thin films of metal acetylacetonate complexes as precursors. The photolysis of these films induces the fragmentation of the acetylacetonate ligand and the partial reduction of metal ion together with volatile organic compounds. When the metallic complex is exposed to air, the product of the reaction is metal oxide. The photoreactivity of these films was monitored by FT-IR spectroscopy, followed by a post-annealing treatment process. The obtained films were characterized by X-ray photoelectron spectroscopy and atomic force microscopy.Photoluminescense studies of the films employed 400 nm radiation for excitation of the Sm ions present. The emission spectra showed signals arising from the 4G5/26HJ (J=3/2, 7/2, 9/2) transitions, where the 4G5/26H3/2 transition has the highest intensity. The concentration dependence of the PL intensity was also studied. A maximum PL intensity was observed with 10 mol% Sm content but then diminished with higher Sm concentrations.  相似文献   

16.
We propose a ‘one bond→two modes’ model for the long wavelength optical phonons in random zinc-blende AxB1−xC ternary alloys, based on the percolation site theory. Our model takes into account the ‘fractal→normal’ object transition, which goes with the ‘dispersion→continuum’ topology transition at the percolation thresholds of the A-C and B-C bonds. We first introduce the basics of our model in the case of Zn1−xBex(Se,Te) mixed crystals, whose parent binaries display a high contrast in the bond stiffness, which enhances the percolation effects. We then focus our study on standard systems, which display a much weaker contrast in the bond stiffness. The multi-phonon behavior of GaInAs alloys is re-examined in the light of the percolation model, with much success.  相似文献   

17.
We consider the model of the optical switching center—a system with the following properties: it has two (or more) metastable states |1〉, |2〉, separated by a potential barrier U; it can switch from one state to another by absorbing the photons with energy ?ωU; the transition |1〉→|2〉 is allowed only for a certain light wave polarization p1 and the transition |2〉→|1〉—for other polarization p2; these polarizations p1, p2 are orthogonal. The optical properties of this system are studied and are found to exhibit unconventional polarization dependence. In particular, the absorption spectrum observed in natural (unpolarized) light can display new features, that are absent in the spectra, obtained in two independent polarizations. We discuss these results in connection with the (yet unexplained) experimental findings [N.N. Loshkareva, Yu.P. Sukhorukov, B.A. Gizhevskii, A.S. Moskvin, T.A. Belykh, S.V. Naumov, A.A. Samokhvalov, Phys. Solid State 40 (1998) 383], where the similar anomalous polarization dependence of the absorption spectra of cupric monoxide CuO after the fast particle bombardment is reported.  相似文献   

18.
We study resonance distributions in a circular dielectric cavity. It is shown that the decay-rate distribution has a peak structure and the details of the peak are consistent with the classical survival probability time distribution. We also investigate the behavior of the complex resonance positions at the small opening limit (n→∞, n is the refractive index of the cavity). At the large n limit, the real part of complex resonance positions approaches the solutions with different m of Dirichlet problem with a scale n−2 and the imaginary part goes zero as n−2m for TM and n−2(m+1) for TE polarization, where m is the order of the resonance.  相似文献   

19.
We study the melting of incommensurate soliton lattice using the exact Bethe ansatz solution of one-dimensional quantum sine-Gordon Hamiltonian with U(1) coupling. The elastic moduli of soliton lattice are obtained and their asymptotic behaviors are explicitly calculated both at zero and finite temperature. We have obtained the thermodynamic phase boundaries of the soliton lattice and shown that the direct commensurate-incommensurate transitions are intervened by the fluid phase for T>0 as predicted by Coppersmith et al. [Coppersmith et al., Phys. Rev. Lett. 46 (1981) 549. [1]] for n≤2.  相似文献   

20.
We numerically investigate the avalanche dynamics of the Bak-Tang-Wiesenfeld sandpile model on directed small-world networks. We find that the avalanche size and duration distribution follow a power law for all rewiring probabilities p. Specially, we find that, approaching the thermodynamic limit (L), the values of critical exponents do not depend on p and are consistent with the mean-field solution in Euclidean space for any p>0. In addition, we measure the dynamic exponent in the relation between avalanche size and avalanche duration and find that the values of the dynamic exponents are also consistent with the mean-field values for any p>0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号