首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

2.
Hsiang MC  Sung YH  Huang SD 《Talanta》2004,62(4):791-799
A simple method was developed for the direct and simultaneous determination of arsenic (As), manganese (Mn), cobalt (Co), and nickel (Ni) in urine by a multi-element graphite furnace atomic absorption spectrometer (Perkin-Elmer SIMAA 6000) equipped with the transversely heated graphite atomizer and longitudinal Zeeman-effect background correction. Pd was used as the chemical modifier along with either the internal furnace gas or a internal furnace gas containing hydrogen and a double stage pyrolysis process. A standard reference material (SRM) of Seronorm™ Trace Elements in urine was used to confirm the accuracy of the method. The optimum conditions for the analysis of urine samples are pyrolysis at 1350 °C (using 5% H2 v/v in Ar as the inter furnace gas during the first pyrolysis stage and pure Ar during the second pyrolysis stage) and atomization at 2100 °C. The use of Ar and matrix-free standards resulted in concentrations for all the analytes within 85% (As) to 110% (Ni) of the certified values. The recovery for As was improved when mixture of 5% H2 and 95% Ar (v/v) internal furnace gas was applied during the first step of a two-stage pyrolysis at 1350 °C, and the found values of the analytes were within 91-110% of the certified value. The recoveries for real urine samples were in the range 88-95% for these four elements. The detection limits were 0.78 μg l−1 for As, 0.054 μg l−1 for Mn, 0.22 μg l−1 for Co, and 0.35 μg l−1 for Ni. The upper limits of the linear calibration curve are 60 μg l−1 (As); 12 μg l−1 (Mn); 12 μg l−1 (Co) and 25 μg l−1 (Ni), respectively. The relative standard deviations (R.S.D.s) for the analysis of SRM were 2% or less. The R.S.D.s of a real urine sample are 1.6% (As), 6.3% (Mn), 7.0% (Ni) and 8.0% (Co), respectively.  相似文献   

3.
This work assesses for the first time the potential of natural Kaolinite as adsorptive material for preconcentration of metal traces. Manganese is quantitatively retained by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) on thermal modified Kaolinite by column method in pH range of 8.5-10.0 at flow rate of 2 ml min−1. Manganese was removed from column with 5.0 ml of H2SO4 4 mol l−1 and determined by flame atomic absorption spectrometric at 279.5 nm. In this case, 0.l μg of manganese can be concentrated from 800 ml of aqueous sample (where concentration is as low as 0.125 μg l−1). Detection limit is 4.3 μg l−1 (3 δbl m−1) and analytical curve is linear in the 0.02-10 mg l−1 in final solution with correlation coefficient 0.9997 and relative standard deviation for eight replicate determination of 5 μg of manganese in final solution is 0.71%. The interference of a large number of anions and cations has been studied in detail to optimize the conditions and method was successfully applied for determination of manganese in complex materials.  相似文献   

4.
Capelo JL  Dos Reis CD  Maduro C  Mota A 《Talanta》2004,64(1):217-223
A new sample preparation procedure based on tandem (that is, different diameter probe sonicators used in the same sample treatment) focused ultrasound (TFU) for mercury separation, preconcentration and back-extraction in aqueous solution from human urine has been developed. The urine is first oxidized with KMnO4/HCl/focused ultrasound (6 mm probe). Secondly, the mercury is extracted and preconcentrated with dithizone and cyclohexane. Finally, the mercury is back-extracted and preconcentrated again with the aid of focused ultrasound (3 mm probe). The procedure allows determining mercury by electrothermal atomic absorption spectrometry with fast furnace analysis and calibration against aqueous standards. Matrix modification is provided by the chemicals used in the sample treatment. The procedure is accomplished with low sample volume (8.5 ml). Low volume and low concentration reagents are used. The sample treatment is rapid (less than 3 min per sample) and avoids the use of organic phase in the graphite furnace. The preconcentration factor used in this work was 14. The limit of detection and the limit of quantification in urine were, respectively, 0.27 and 0.9 μg l−1. The relative standard deviation of aqueous standards (n=10) was 4% for a concentration of 100 μg l−1 and 5% for a concentration of 400 μg l−1. Recoveries from spiked urine with inorganic mercury, methyl-mercury, phenyl-mercury and diphenyl-mercury ranged from 86 to 98%.  相似文献   

5.
The use of a permeation liquid membrane system for the preconcentration and separation of nickel in natural and sea waters and subsequent determination by atomic absorption spectroscopy is presented. 2-Hydroxybenzaldehyde N-ethylthiosemi-carbazone (2-HBET) in toluene is used as the active component of the liquid membrane. A study strategy based on a simplex design has been followed. Several chemical and physical parameters were optimized. Maximum permeation coefficient was obtained at a feed solution pH of 9.4, 0.3 mol l−1 of HNO3 in the stripping solution and 1.66 mmol l−1 of 2-HBTE in toluene as carrier. The precision of the method was 4.7% at 95% significance level and a detection limit of 0.012 μg l−1 of nickel was achieved. The preconcentration procedure showed a linear response within the studied concentration range from 3 to 500 μg l−1 of Ni in the feed solution. The method was validated with different spiked synthetic seawater and certified reference water samples: TMDA-62 and LGC 6016, without matrix interferences and showing good concordance with the certified values, being the relative errors −5.9% and −2.2%, respectively. Under optimal conditions, the average preconcentration yield for real seawater samples was 98 ± 5%, with a nickel preconcentration factor of 20.83 and metal concentrations ranging between 2.8 and 5.4 μg l−1.  相似文献   

6.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

7.
Marta Knap 《Talanta》2007,71(1):406-410
An on-line preconcentration procedure for the determination of manganese using flow-injection approach with flame atomic absorption spectrometry as a detection method is described. The proposed method is based on the complexation between Mn(II) and 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP). Two approaches were investigated for enrichment of manganese; the formation of Mn-TCPP complex in a solution followed by its retention on a sorbent and the sorption of manganese ions onto the TCPP-modified resin. The best results was obtained for the first approach when 10−5 M reagent was on-line mixed with an aqueous sample solution and passed through the microcolumn packed with anion-exchange resin Amberlite IRA-904 for 5 min. The sorbed complexes were then eluted with 0.5 ml of 2 M HNO3. A good precision (2.2-3.1% R.S.D. for 50 μg l−1 manganese) and the enrichment factor of 30 were obtained with the detection limit of 12 μg l−1 for 5 min loading time. The interference of anions and cations has been studied to optimize the conditions and the method was applied for determination of manganese in natural water samples. The results obtained by FI-FAAS and ETAAS (as a reference method) were not statistically different for a significance level of 0.05.  相似文献   

8.
A flow injection on-line sorption preconcentration system has been synchronously coupled to an electrothermal atomic absorption spectrometry (ETAAS) system for the selective determination of trace amounts of Sb(III) in water, soil and plant. The determination was achieved by selective complexation and sorption of Sb(III) with [1,5-bis(2-pyridyl)-3-sulphophenyl methylene thiocarbonohydarzide (PSTH) immobilized on an anion-exchange resin (Dowex 1× 8-200)] at a wide range of pH, quantitative elution with 50 μl of 2 M HNO3 and subsequent ETAAS detection. ETAAS determination of the analyte was performed in parallel with the preconcentration of the next sample. Using a preconcentration time of 60 s and a sample loading flow rate of 2.8 ml min−1, an enhancement factor of 12 was obtained in comparison with direct injection of 50 μl aqueous solution, resulting in a sampling frequency of 31 samples h−1. The detection limit (3 s) was 2 μg l−1 and the precision was 3.1% (R.S.D.) for 11 replicate determinations at 10 μg l−1. The accuracy of the proposed method was demonstrated by analyzing one certified sample and different spiked samples.  相似文献   

9.
Sawula GM 《Talanta》2004,64(1):80-86
Microcolumns containing 8-hydroxyquinoline azo-immobilized on controlled pore glass were incorporated in a field sampler for on-site collection, isolation and preconcentration of trace metal ions in waters of the Okavango Delta, Botswana. Sequestered trace metal ions were recovered by elution with 0.5 ml of 1.5 M nitric acid, and determined by graphite furnace atomic absorption spectrometry (GFAAS). This sampling and enrichment method minimizes sample contamination, and collection of large volumes of water samples for transporting, over long distances, to analytical laboratories is avoided.Data reported comprise one of the initial surveys on trace metal ion concentrations in waters of the Okavango Delta, Botswana. In waters with more efficient mixing, dissolved metal ion concentrations found were generally low with slightly elevated levels of manganese (7-19 μg l−1), zinc (2.7-4.8 μg l−1), nickel (0.2-2.5 μg l−1) and copper (0.3-2.1 μg l−1). For each trace metal ion, concentration levels seem to reflect zones of varying water conveyance, and show no obvious temporal and spatial variations apart from a slight increment from the inlet in the upper Delta to the outlets in the lower Delta.  相似文献   

10.
Erdem A  Eroğlu AE 《Talanta》2005,68(1):86-92
A selective matrix removal/separation/enrichment method, utilizing a microcolumn of a chelating resin with SH functional groups (Duolite GT-73), was proposed for the determination of Sb(III) in waters by segmented flow injection-hydride generation atomic absorption spectrometry (SFI-HGAAS). The resin was selective to Sb(III) at almost all pH and acidity values employed, whereas Sb(V) was not retained at all and could be determined after a pre-reduction step with l-cysteine. Spike recoveries were tested at various concentration levels in different water types and were found to vary between 85 and 118%. Accuracy of the proposed methodology was checked by analyzing a standard reference material and a good correlation was found between the determined (13.3 ± 1.1 μg l−1) and the certified value (13.79 ± 0.42 μg l−1). The method was applied to several bottled drinking water samples for antimony determination with and without preconcentration and none of the samples were found to contain antimony above the permissible level (5 μg l−1). The characteristic concentration (the concentration of the analyte corresponding to an absorbance of 0.0044) was 0.55 μg l−1 and the 3 s limit of detection (LOD) based on five times preconcentration was 0.06 μg l−1. The applicability of the microcolumn separation/preconcentration/matrix removal method for flow injection systems was also demonstrated.  相似文献   

11.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

12.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

13.
A new flow injection (FIA) procedure for the preconcentration of cadmium in urine using multiwalled carbon nanotubes (MWCNT) as sorbent and posterior electrothermal atomization atomic absorption spectrometry (ETA-AAS) Cd determination has been developed. Cadmium was retained in a column filled with previously oxidized MWCNTs and it was quantitatively eluted with a nitric acid solution. The parameters influencing the adsorption-elution process such as pH of the sample solution, amount of sorbent and flow rates of sample as well as eluent solutions have been studied. Cd concentration in the eluent was measured by ETA-AAS under the optimized conditions obtained. The results indicated the elimination of urine matrix effect as a consequence of the preconcentration process performed. Total recovery of cadmium from urine at pH 7.2 using a column with 45 mg of MWCNTs as sorbent and employing a HNO3 0.5 mol L−1 solution for elution was attained. The detection limit obtained was 0.010 μg L−1 and the preconcentration factor achieved was 3.4. The method showed adequate precision (RSD: 3.4-9.8%) and accuracy (mean recovery: 97.4-100%). The developed method was applied for the determination of cadmium in real urine samples from healthy people (in the range of 0.14-2.94 μg L−1) with satisfactory results.  相似文献   

14.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

15.
A general and broad class selective enzyme-linked immunosorbent assay was developed for the type II pyrethroid insecticides, such as cypermethrin, deltamethrin, cyhalothrin, cyfluthrin, fenvalerate, esfenvalerate and fluvalinate. Polyclonal antibodies were generated by immunizing with a type II pyrethroid immunogen ((RS)-α-cyano-3-phenoxybenzyl (RS)-cis,trans-2,2-dimethyl-3-carboxyl-cyclopropanecarboxylate) conjugated with thyroglobulin. Antisera were screened against nine different coating antigens. The antibody-antigen combination with the most selectivity for type II pyrethroids such as cypermethrin was further optimized and tested for tolerance to co-solvent, pH and ionic strength changes. The IC50s of the optimized immunoassay were 78 μg l−1 for cypermethrin, 205 μg l−1 for cyfluthrin, 120 μg l−1 for cyhalothrin, 13 μg l−1 for deltamethrin, 6 μg l−1 for esfenvalerate, 8 μg l−1 for fenvalerate and 123 μg l−1 for fluvalinate. No cross-reactivity was measured for the type I pyrethroids such as permethrin, bifenthrin, phenothrin, resmethrin and bioresmethrin. This assay can be used in monitoring studies to distinguish between type I and II pyrethroids.  相似文献   

16.
Dutra RL  Maltez HF  Carasek E 《Talanta》2006,69(2):488-493
An on-line preconcentration system for zinc determination in 24-h urine, blood plasma and erythrocyte matrices by flame atomic absorption spectrometry (FAAS) was used. This procedure was based on adsorption of Zn(II) ions onto a minicolumn filled with silica gel, chemically modified with niobium(V) oxide (Nb2O5-SiO2). The determination of the optimum conditions for Zn(II) preconcentration was done using two-level full factorial and Doehlert designs. In the optimization procedure, four variables (sample pH, eluent concentration, sample flow rate and eluent flow rate) were investigated. The results obtained from the full factorial design demonstrated that the sample pH and sample flow rate variables, and their interactions, were statistically significant. A Doehlert matrix was used in order to determine the optimum conditions for the sample pH and sample flow rate. The optimized conditions for sample pH and flow rate sampling were 6.6 and 7.1 ml min−1, respectively, to obtain the maximum Zn(II) preconcentration and determination in the biological samples studied. Parameters of analytical curve, precision, effect of other ions in the proposed system and accuracy were achieved to assess the proposed method. The accuracy was confirmed by analysis of certified reference materials (urine Seronorm™ Trace Elements) and recovery tests in blood plasma and erythrocyte samples. Detection limit (3σ/S) of 0.77 μg l−1, precision (calculated as relative standard deviation) of 1.5% for Zn(II) concentration of 10 μg l−1 (n = 7) and a sampling frequency of 27 samples/h were obtained from the proposed system.  相似文献   

17.
A flow system was coupled to a graphite furnace with a platform coated with tungsten-rhodium permanent chemical modifier for in-line separation and preconcentration of copper by employing a minicolumn loaded with 1-(2-tiazolylazo)-2-naphthol (TAN) immobilized on C18-bonded silica fixed in the tip of the autosampler arm. Elution was made by sampling 35 μl of 0.50 mol l−1 HCl with further delivering into a coated platform. Remarkable improvements in both selectivity and sensitivity were observed. Copper(II) was effectively separated from solutions containing up to 20 g l−1 Na+; 10 g l−1 K+, Ca2+ and Mg2+; 1.0 g l−1 Fe3+ and Zn2+. For a sample flowing at 3.0 ml min−1 and a loading of 60 s, the detection limit was estimated as 5 ng l−1 Cu(II) at the 99.7% confidence level, and an enrichment factor of 33 was calculated. Coefficient of variation was estimated as 4% for a 0.30 μg l−1 copper solution (n=20). The W-Rh permanent chemical modifier was used to improve system stability, analytical performance and atomizer lifetime. More than 1500 firings were carried out with the same atomizer without significant variations in sensitivity and precision. On account of the reagent immobilization, its consumption was lower than 0.2 μg per determination. In addition, TAN purification was unnecessary.  相似文献   

18.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

19.
Starvin AM  Rao TP 《Talanta》2004,63(2):225-232
Diarylazobisphenol (DAB) 1 and diarylazobisphenol modified carbon 2 were synthesized and characterised. The latter has been used for solid phase extractive preconcentration and separation of trace amounts of uranium(VI) from other inorganics. In this, a column mode preconcentration of uranium(VI) was carried out in the pH range 4.0-5.0, eluted with 1.0 mol l−1 HCl and determined by an Arsenazo III spectrophotometric procedure. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 25 μg of uranium(VI) present in 1 l solution gave a mean absorbance of 0.032 with a relative standard deviation of 2.52%. The detection limit corresponding to three times the standard deviation of the blank was found to be 5 μg l−1. The accuracy of the developed preconcentration method in conjunction with the Arsenazo III procedure was tested by analysing MESS-3, a marine sediment certified reference material. Further, the above procedure has been successfully employed for analysis of uranium(VI) in soil and sediment samples.  相似文献   

20.
The present work reports the development of a methodology for the direct determination of vanadium in high saline waters derived from offshore petroleum exploration employing electrothermal atomic absorption spectrometry. Such waters, usually called produced waters, present complex composition containing various organic and inorganic substances. In order to attain best conditions (highest sensitivity besides lowest background) for the methodology, studies about the effects of several variables (evaluation of pyrolysis and atomization temperatures, type of chemical modifier, concentration of modifier and pyrolysis time) and the convenient calibration strategy were performed. Best conditions were reached with the addition of 10 μg of NH4H2PO4 as chemical modifier employing pyrolysis (during 10 s) and atomization temperatures of 1500 and 2700 °C, respectively. Obtained results indicated that, in this kind of sample, vanadium can be determined by standard addition method or employing an external calibration approach with standard solutions prepared in 0.8 mol l−1 NaCl medium. In order to evaluate possible matrix interferences, a recovery test was performed with five spiked samples of produced waters. The limit of detection, limit of quantification and relative standard deviation in 0.8 mol l−1 NaCl medium were also calculated and the derived values were 1.9 μg l−1, 6.3 μg l−1 and 5.6% (at 10 μg l−1 level), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号