首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg−1 to mg kg−1. However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0–1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (AsIII), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (AsV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean ± standard deviation μg kg−1) AsB (107 ± 4), AsIII (113 ± 7), AsV (7 ± 2), MMA (51 ± 5), DMA (64 ± 6), Roxarsone (18 ± 1), and four unidentified arsenic species (approximate concentration 1–10 μg kg−1).  相似文献   

2.
Arsenic pollution of public water supplies has been reported in various regions of the world. Recently, some cancer patients are treated with arsenite (AsIII); most Japanese people consume seafoods containing large amounts of negligibly toxic arsenic compounds. Some of these arsenic species are metabolized, but some remain intact. For the determination of toxic AsIII, a simple, rapid and sensitive method has been developed using electrospray ionization mass spectrometry (ESI-MS). AsIII was reacted with a chelating agent, pyrrolidinedithiocarbamate (PDC, C4H8NCSS-) and tripyrrolidinedithiocarbamate-arsine, As(PDC)3, extracted with methyl isobutyl ketone (MIBK). A 1 μL aliquot of MIBK layer was directly injected into ESI-MS instrument without chromatographic separation, and was detected within 1 min. Arsenate (AsV) was reduced to AsIII with thiosulfate, and then the total inorganic As was quantified as AsIII. This method was validated for the analysis of urine samples. The limit of detection of As was 0.22 μg L−1 using 10 μL of sample solution, and it is far below the permissible limit of As in drinking water, 10 μg L−1, recommended by the WHO. Results were obtained in < 10 min with a linear calibration range of 1-100 μg L−1. Several organic arsenic compounds in urine did not interfere with AsIII detection, and the inorganic As in the reference materials SRM 2670a and 1643e were quantified after the reduction of AsV to AsIII.  相似文献   

3.
We calculated the intake of each chemical species of dietary arsenic by typical Japanese, and determined urinary and blood levels of each chemical species of arsenic. The mean total arsenic intake by 35 volunteers was 195±235 (15.8-1039) μg As day?1, composed of 76% trimethylated arsenic (TMA), 17.3% inorganic arsenic (Asi), 5.8% dimethylated arsenic (DMA), and 0.8% monomethylated arsenic (MA): the intake of TMA was the largest of all the measured species. Intake of Asi characteristically and invariably occurred in each meal. Of the intake of Asi, 45-75% was methylated in vivo to form MA and DMA, and excreted in these forms into urine. The mean measured urinary total arsenic level in 56 healthy volunteers was 129±92.0 μg As dm?3, composed of 64.6% TMA, 26.7% DMA, 6.7% Asi and 2.2% MA. The mean blood total arsenic level in the 56 volunteers was 0.73±0.57 μg dl?1, composed of 73% TMA, 14% DMA and 9.6% Asi. The urinary TMA levels proved to be significantly correlated with the whole-blood TMA levels (r = 0.376; P<0.01).  相似文献   

4.
The oxidation potentials of As0/AsIII and Sb0/SbIII on the gold electrode are very close to each other due to their similar chemistry. Arsenic concentration in seawater is low (10–20 nM), Sb occurring at ∼0.1 time that of As. Methods are shown here for the electroanalytical speciation of inorganic arsenic and inorganic antimony in seawater using a solid gold microwire electrode. Anodic stripping voltammetry (ASV) and chronopotentiometry (ASC) are used at pH ≤ 2 and pH 8, using a vibrating gold microwire electrode. Under vibrations, the diffusion layer size at a 5 μm diameter wire is 0.7 μm. The detection limits for the AsIII and SbIII are below 0.1 nM using 2 min and 10 min deposition times respectively. AsIII and SbIII can be determined in acidic conditions (after addition of hydrazine) or at neutral pH. In the latter case, oxidation of As0 to AsIII was found to proceed through a transient AsIII species. Adsorption of this species on the gold electrode at potentials where SbIII diffused away is used for selective deposition of AsIII. Addition of EDTA removes the interfering effect of manganese when analysing AsIII. Imposition of a desorption step for SbIII analysis is required. Total inorganic arsenic (iAs = AsV + AsIII) can be determined without interference from Sb nor mono-methyl arsenious acid (MMA) at 1.6 < pH < 2 using Edep = −1 V. Total inorganic antimony (iSb = SbV + SbIII) is determined at pH 1 using Edep = −1.8 V without interference by As.  相似文献   

5.
Sensitivities for the measurement of four arsenic species, AsIII, AsV, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), in environmental waters and rice extracts by a new neutron activation analysis (NAA) method using pre-separation of the species by liquid chromatography were determined. A manual fraction collection was used to isolate the species, followed by instrumental neutron activation analysis procedures. The sensitivities determined for arsenic species in the samples varied from 1.21 to 1.47 ng per vial or about 30 μg·L−1 in sample solutions which translates to about 900 ng arsenic per gram of rice for our HPLC-NAA experiments.  相似文献   

6.
Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP–MS detection. Separation of eight arsenic species—AsIII, MMA, DMA, AsV, AB, TMAO, AC and TeMAs+—was achieved on a C18 column with isocratic elution (pH 3.0), under which conditions AsIII and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC–ICP–MS detection limits for the eight arsenic species were in the range 0.03–0.23 μg L−1 based on 3σ for the blank response (n=5). The precision was calculated to be 2.4–8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18–9.59 μg g−1. This paper was presented at the European Winter Conference 2005  相似文献   

7.
There are no reports in scientific literature on arsenic species in human saliva after seaweed exposure. The present article reports for the first time the regular excretion patterns of arsenic in the saliva of volunteers with one-time ingestion of Chinese seaweed. Total arsenic and speciation analyses were carried out by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC-ICP-MS). Results show that the excretion time of total arsenic in saliva is a trifle earlier than that in urine, total arsenic in human saliva also shows a regular excretion pattern like that in urine within 72 h after exposure to seaweed. For speciation analysis, four species, including the major dimethylarsinic acid (DMA) species, were detected in urine prior to seaweed intake. Six species were detected in urine after seaweed ingestion, including DMA, methylarsonic acid (MMA), oxo-dimethylarsinoylethanol (oxo-DMAE), thio-dimethlyarsenoacetate (thio-DMAA), arsenite (AsIII) and arsenate (AsV). In saliva samples, three species were found before seaweed ingestion, with the major peak identified as AsIII. After consumption, the kinds of arsenic metabolites in saliva were less than those in urine. The major species was inorganic arsenic (iAs AsIII+AsV), followed by DMA, MMA and a trace amount of oxo-DMAE. Taken together, the present study suggests that saliva assay can be used as a potential tool for understanding the regular excretion pattern of total arsenic after seaweed ingestion. Whether or not it’s an efficient tool for assessing arsenic metabolites in humans exposed to seaweed requires further investigation.  相似文献   

8.
The application of ion-pair reversed phase chromatography (HPLC) and inductively coupled plasma mass spectrometry to the determination of six species of arsenic is described: arsenious acid (AsIII), arsenic acid (AsV), monomethylarsinic acid (MMA), dimethylarsinic acid (DMA), arsenocholine (AsC) and arsenobetaine (AsB) in marine biota and in natural fresh water. The coupling conditions of HPLC-ICP-MS are given and also the evaluation of the extraction procedure applied to determine these species in marine organisms. The limits of detection are between 6 and 25 g.l–1.  相似文献   

9.
Known analytical techniques are not applicable to the accurate and precise determination of AsV and total arsenic (Ast) in the mixtures of AsIII and AsF6. For this reason, an accurate and precise analytical procedure for determination of the content of AsV and Ast in the range of 5-10 mg of As with a relative standard deviation (R.S.D.) smaller than 0.4% was developed. The results were proved by the determination of AsIII by titration with KBrO3 and gravimetric determination of AsF6 species.  相似文献   

10.
Arsenic Speciation in Urine and Blood Reference Materials   总被引:1,自引:0,他引:1  
Acute and chronic exposure to arsenic is a growing problem in the industrialized world. Arsenic is a potent carcinogen and toxin in humans. In the body, arsenic is metabolized to produce several species, including inorganic forms, such as trivalent (AsIII) and pentavalent (AsV), and the methylated metabolites such as monomethylarsonic acid, (MMAV), and dimethylarsinic acid (DMAV), in addition to arsenobetaine (AsB) which is ingested and excreted from the body in the same form. Each of these species has been reported to possess a specific but different degree of toxicity. Thus, not only is the measurement of total As required, but also quantification of the individual metabolites is necessary to evaluate the toxicity and risk assessment of this element. There are a large number of reference materials that are used to validate methodology for the analysis of As in blood and urine, but they are limited to total As concentrations. In this study, the speciation of five arsenic metabolites is reported in blood and urine from commercial available control materials certified for total arsenic levels. The separation was performed with an anion exchange column using inductively coupled plasma mass spectrometry as a detector. Baseline separation was achieved for AsIII, AsV, MMAV, DMAV, and AsB, allowing us to quantify all five species. Excellent agreement between the total arsenic levels and the sum of the speciated As levels was obtained.  相似文献   

11.
T Guerin  M Astruc  A Batel  M Borsier 《Talanta》1997,44(12):133
An anion exchange HPLC-ICP-MS procedure allowing the simultaneous multielemental speciation analysis of arsenic, selenium, antimony and tellurium has been developed. Four arsenic species (AsIII, AsV, monomethylarsonic acid and dimethylarsinic acid), two selenium species (SeIV and SeVI) may be determined in a single run as well as one antimony (SbV) and one tellurium species (TeVI). Alternatively Sb and/or Te may be used as internal standards for As and Se speciation studies. Optimisation of ICP-MS conditions led to satisfactory relative (0.01 (SbV) to 1.8 (SeVI) ng ml−1) and absolute detection limits (1–180 pg). Reproducibility ranged from 3.1 to 5.6% and the linearity was verified in the 0–200 ng ml−1 range.  相似文献   

12.
Direct electrochemical determination of arsenate (AsV) in neutral pH waters is considered impossible due to electro-inactivity of AsV. AsIII on the other hand is readily plated as As0 on a gold electrode and quantified by anodic stripping voltammetry (ASV). We found that the reduction of AsV to AsIII was mediated by elemental Mn on the electrode surface in a novel redox couple in which 2 electrons are exchanged causing the Mn to be oxidised to MnII. Advantage is taken of this redox couple to enable for the first time the electrochemical determination of AsV in natural waters of neutral pH including seawater by ASV using a manganese-coated gold microwire electrode. Thereto Mn is added to excess (∼1 μM Mn) to the water leading to a Mn coating during the deposition of As on the electrode at a deposition potential of −1.3 V. Deposition of As0 from dissolved AsV caused elemental Mn to be re-oxidised to MnII in a 1:1 molar ratio providing evidence for the reaction mechanism. The deposited AsV is subsequently quantified using an ASV scan. AsIII interferes and should be quantified separately at a more positive deposition potential of −0.9 V. Combined inorganic As is quantified after oxidation of AsIII to AsV using hypochlorite. The microwire electrode was vibrated during the deposition step to improve the sensitivity. The detection limit was 0.2 nM AsV using a deposition time of 180 s.  相似文献   

13.
Calibration-free determination of AsIII in the presence of AsV using coulometric stripping potentiometry is described. AsIII, in the concentration range 0.01-2 mg/L, is quantitatively reduced to elemental arsenic and simultaneously dissolved in gold codeposited onto a glassy carbon substrate by electrolysis for 4 minutes at −0.50 V (vs. Ag/AgCl (0.01 MCl)) in 12 μL samples containing 3 M hydrochloric acid and 10 mg/L gold(III). Selectivity between arsenic(III) and (V) is achieved by proper control of the deposition potential and by minimizing the gold(III) concentration and the time between addition of gold(III) and commencement of analysis.  相似文献   

14.
Jiang  Hong  Ding  Jinghua  Chang  Pei  Chen  Zaixing  Sun  Guifan 《Chromatographia》2010,71(11):1075-1079

Study on the stoichiometry and affinity of the arsenicals bound to HSA is an important step toward a better understanding of arsenic toxic effects. After incubation of AsIII or AsV with HSA at the physiological conditions (pH 7.43 and 37 °C), the free arsenicals and arsenic-HSA complexes were separated and detected by the combined techniques of microdialysis and liquid chromatography with hydride generation atomic fluorescence spectroscopy (MD–LC–HGAFS). The decrease of AsIII peak response rather than AsV indicated that HSA reacted with AsIII but not AsV. The binding plots indicated that the binding between HSA and AsIII was in Scatchard pattern when the concentration ratios of AsIII to HSA were ≤1:1. The strong binding sites (n 1) were 1.6 and the stability constant (K 1) was 1.54 × 106 M−1. When the concentration ratios of AsIII to HSA were >1:1, the binding was in Plasvento pattern with the stability constant K 2 ≅ 0 and no specific binding of AsIII with HSA. On the contrary, AsV did not show binding with HSA. The results showed that AsIII reacted with HSA more readily than AsV, which provides a chemical basis for arsenic toxicity.

  相似文献   

15.
This work describes the application of synchrotron-based X-ray Absorption Near-Edge Structure spectroscopy to study the oxidation state of arsenic in cigarette mainstream smoke, cut tobacco and cigarette ash. The level of arsenic in the total particulate matter of the smoke is approximately 1 ppm for the standard research reference cigarette 2R4F and its replacement 3R4F. Smoke particulate samples collected by a conventional glass-fiber membrane (commercially known as Cambridge filter pad) and a jet-impaction method were analyzed and compared. In addition smoke particulate samples were aged either at ambient temperature or at 195 K. X-ray Absorption Near-Edge Structure spectroscopy results revealed that the cut tobacco powder and cigarette ash contained almost exclusively AsV. The smoke particulate samples however contained a mixture of AsIII and AsV. The AsV in the smoke particulate was reduced to AsIII upon aging. Stabilizing the smoke particulate matter at 195 K by solid CO2 slowed down this aging reaction and revealed a higher percentage of AsV. This behavior is consistent with the redox properties of the arsenic species and the smoke particulate matrix.  相似文献   

16.
Study on the stoichiometry and affinity of the arsenicals bound to HSA is an important step toward a better understanding of arsenic toxic effects. After incubation of AsIII or AsV with HSA at the physiological conditions (pH 7.43 and 37 °C), the free arsenicals and arsenic-HSA complexes were separated and detected by the combined techniques of microdialysis and liquid chromatography with hydride generation atomic fluorescence spectroscopy (MD–LC–HGAFS). The decrease of AsIII peak response rather than AsV indicated that HSA reacted with AsIII but not AsV. The binding plots indicated that the binding between HSA and AsIII was in Scatchard pattern when the concentration ratios of AsIII to HSA were ≤1:1. The strong binding sites (n 1) were 1.6 and the stability constant (K 1) was 1.54 × 106 M?1. When the concentration ratios of AsIII to HSA were >1:1, the binding was in Plasvento pattern with the stability constant K 2 ? 0 and no specific binding of AsIII with HSA. On the contrary, AsV did not show binding with HSA. The results showed that AsIII reacted with HSA more readily than AsV, which provides a chemical basis for arsenic toxicity.  相似文献   

17.
A scheme for the determination of total As by electrothermal atomic absorption spectrometry (ETAAS) and the sum of toxicologically relevant arsenic species (As(III), As(V), monomethylarsonate (MMA) and dimethylarsinate (DMA) using hydride generation AAS (HGAAS) in fish samples was developed. Simple and fast microwave assisted extraction in tetramethylammonium hydroxide (TMAH, 0.075% m / v) or in water-methanol mixture (80 + 20 v / v) for 20 min is proposed for quantitative leaching of arsenic species from fish tissue. Total As was measured by ETAAS directly in the TMAH extract under optimal instrumental parameters (pyrolysis temperature 1400 °C and atomization temperature 2000 °C) with Pd as modifier ensuring thermal stabilization and isoformation of all extracted arsenic species. The analytical features of the method are as follows: limit of detection (LOD) 0.45 μg g− 1 (dry wt.), within-run and between-run precision in the range 4-8% and 5-12%, respectively, for arsenic contents 0.5-30 μg g− 1 and recoveries 98-102%. The sum of toxicologically relevant arsenic species (As(III) + As(V) + MMA + DMA) was determined by flow injection HGAAS directly from the TMAH extract or water-methanol mixture and trapping of arsines onto Zr-Ir coated graphite tube followed by ETAAS measurement. l-cysteine is used as reagent for leveling off responses of different arsenic species in the presence of TMAH or water-methanol mixture. The LODs achieved are 0.0038 and 0.0031 μg g− 1 (dry wt.), respectively, for fish extracts in TMAH and in water-methanol mixture. Within-batch and between-batch RSDs are in the range 3-5% and 4-7% for arsenic contents of 0.009-0.25 μg g− 1 (dry wt.) for TMAH extracts and 2-4% and 3-6% for methanol water extracts, respectively. Selective reaction media for generation of respective hydrides from arsenic species were recommended for further speciation purposes in methanol-water extracts, viz. citrate buffer (pH 5.2) for the determination of As(III), 0.2 mol L− 1 acetic acid for the determination of As(III) + DMA and 7 mol L− 1 hydrochloric acid for the determination of inorganic As(III) + As(V). LODs are 0.0035, 0.0051 and 0.0046 μg g− 1 (dry wt.) for As(III), DMA and As(V). The relative standard deviation is 4-8% for three arsenic species at As levels of 0.009-0.5 μg g− 1 (dry wt.). The accuracy of the proposed speciation scheme is confirmed by the analysis of certified reference materials.  相似文献   

18.
Humans are exposed to arsenic by inhalation and ingestion and are therefore may be affected by its toxicity. Arsenic may enter the human body by inhalation and ingestion. Cooking may alter the contents and chemical forms of arsenic. The determination of arsenic species in Lentinus edodes after microwave blanching was performed by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry. Using a physiologically based extraction, the bioaccessibility of arsenic species in raw L. edodes and microwave blanching treated L. edodes were determined after the simulated gastrointestinal digestion. The arsenate (AsV), arsenite (AsIII), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine, and arsenocholine did not undergo decomposition and transformation in this study. Furthermore, the total contents of arsenic in L. edodes samples were in the range of 0.1378?±?0.0044–0.2347?±?0.0144?mg/kg. Approximately 3.38–43.27% were released from samples into the blanching water after various microwave blanching treatments. The oxidation of AsIII and demethylation of DMA and MMA were observed in L. edodes during digestion, increasing the likelihood of arsenic toxicity in the liver. The health risk for arsenic in L. edodes was decreased after microwave blanching because the potentially available arsenic in microwave blanching treatments L. edodes samples (83.78?±?0.9103%) were lower than those in raw L. edodes samples (88.33?±?0.7983%). L. edodes subjected to microwave blanching prior to consumption significantly decreased the total arsenic content and the risk of arsenic exposure to consumers (p?相似文献   

19.
Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the AsV methylation pathway was generally considered to be a detoxification pathway, but cellular and animal studies involving MMAIII (mono metyl arsonous acid) and DMAIII (dimethyl arsinous acid) have indicated that their toxicities meet or exceed that of iAs, suggesting an activation process. In addition, thiolated arsenic metabolites were observed in urine after oral exposure of inorganic arsenic in some studies, for which the toxicological profile was not yet fully characterized in human cells. Studies have revealed that microorganisms from the gut environment are important contributors to arsenic speciation changes. This presystemic metabolism necessitates the development of protocols that enable the detection of not only inorganic arsenic species, but also pentavalent and trivalent methylated, thiolated arsenicals in a gastrointestinal environment. We aim to study the biotransformation of arsenic (As) using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME). To be able to analyze the arsenicals resulting from biotransformation reactions occurring in this system, a method using liquid chromatography hyphenated to an inductively coupled plasma mass spectrometer (HPLC‐ICP‐MS) was developed. A Hamilton PRP‐X100 anion exchange column was used. The method allowed separation, identification and quantification of AsIII(arsenite), AsV(arsenate), DMAV(dimethylarsinicacid), MMAV(monomethylarsonicacid) and MMMTA (monomethylmonothioarsenate). Attempts to optimize the same method for also separating MMAIII and DMAIII did not succeed. These compounds could be successfully separated using a method based on the use of a Zorbax C18 column. The properties of the column, buffer strength, pH and polar nature of mobile phase were monitored and changed to optimize the developed methods. Linearity, sensitivity, precision, accuracy and resolution of both methods were checked. The combination of the two methods allowed successful quantification of arsenic species in suspensions sampled in vitro from the SHIME reactor or in vivo from the human colon and feces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
An electrochemical method for the simultaneous determinations of HgII concentration and total AsIII and AsV concentration has been developed. The method does not require the additional preliminary step of the chemical reduction of AsV to AsIII, or oxidation of AsIII to AsV before stripping analysis takes place. Also, the method for the simultaneous determination of HgII concentration and AsIII concentration is described. Measurements were performed in 0.1 M HCl using a gold-plated graphite electrode as sensor. Detection limits for both methods are below 0.4 ppb. Relative standard deviation did not exceed 15%. The possible interference by other trace metals was investigated. Analyses of natural water and industrial solutions were made using proposed methods and AAS. The t-test demonstrates that there was no significant difference between the results obtained with these methods. Proposed methods decrease the time of analysis because concentrations of the HgII and arsenic ions were measured simultaneously. Also, the removal of the additional step of chemical reduction of AsV to AsIII or oxidation of AsIII to AsV decreases analysis time, and also reduces the chance of contamination due to the use of additional reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号