首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports the use of and -cyclodextrin-modified carbon paste electrodes (CPE-CD and CPE-CD) to determine simultaneously Pb(II) and Cd(II) by means of the electrochemical technique known as anodic stripping voltammetry (ASV). Both modified electrodes displayed good resolution of the oxidation peaks of the said metals. Statistic analysis of the results strongly suggests that the CPE-CD exhibited a better analytical response that the CPE-CD, while the detection limits obtained for Pb(II) were 6.3×10–7 M for the CPE-CD and 7.14×10–7 M for the CPE-CD, whereas for Cd(II) they were 2.51×10–6 M for the CPE-CD and 2.03×10–6 M for the CPE-CD.  相似文献   

2.
Wang Z  Zhang H  Zhou S  Dong W 《Talanta》2001,53(6):1133-1138
A novel method is described for determination of metoclopramide (MCP) by second-derivative adsorptive anodic stripping voltammetry with a nafion-modified electrode. The stripping peak current is proportional to the concentration of MCP over the range 1.2×10−9–4.6×10−7 M. The detection limit is 8.0×10−11 M with 4-min accumulation. The method has been successfully applied to the determination of MCP in human serum.  相似文献   

3.
建立了一种测定痕量铋的新方法,即利用掺杂硒碳糊电极作为工作电极的阳极溶出法.在0.1 mol/L的HCl底液中,Bi3+于+0.05V(vs.Ag/AgCl)出现灵敏的氧化溶出峰,铋离子的浓度在1.0×10-5~1.0×10-9 mol/L范围内其对数值lgc与铋的氧化峰电流值呈线性关系,检出限达1.0×10 -10 ...  相似文献   

4.
碳糊电极阳极吸附伏安法测定洛美沙星   总被引:3,自引:0,他引:3  
报道了碳糊电极阳极吸附伏安法测定洛美沙星的新方法。在0.096mol L的KHP NaOH(pH5.4)缓冲液中,用碳糊电极为工作电极,在0.3V(vs.SCE)富集一定时间,然后从0.3~1 3V以300mV s扫速线性扫描,记录其在1 02V的二次导数阳极溶出峰。溶出峰电流与洛美沙星浓度在8.0×10-9~8.0×10-8mol L(富集90s)和8.0×10-8~8.0×10-7mol L(富集30s)范围内呈良好的线性关系,相关系数分别为0.9844和0.9967,检出限为9.0×10-10mol L(S N=3)。探讨了洛美沙星在碳糊电极上的伏安性质和电极反应机理,并且成功地应用于人体尿液中洛美沙星的测定,结果与紫外光度法基本吻合。  相似文献   

5.
制备了茜素红S/多壁碳纳米管修饰碳糊电极,提出了一种灵敏的溶出伏安法测定痕量铜的新方法.在极谱分析仪上采用二阶导数线性扫描伏安法进行分析,在0.1 moL/L的HAc-NaAc缓冲溶液(pH 4.1)中,Cu与修饰电极表面的茜素红S(ARS)形成Cu(Ⅱ)-ARS络合物而富集于电极表面,于-400 mV处还原后,再进行阳极化扫描,于64 mV处获得一灵敏的铜的阳极溶出峰,峰电流与Cu(Ⅱ)浓度在2×10-11 mol/L~6×10-7 mol/L范围内呈良好的线性关系,检出限(S/N=3) 为8.0×10-12 mol/L(富集时间240 s).方法应用于人发中铜含量的测定,回收率为98%~102%.  相似文献   

6.
A sensitive method is described for the determination of trace bismuth based on the bismuth-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). The overall analysis involved a three-step procedure: accumulation, reduction, and anodic stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder, a 0.30 mol l−1 HCl solution containing 2.0×10−5 mol l−1 BPR as supporting medium; accumulation potential and time, −0.10 V, 3 min; reduction potential and time, −0.35 V, 60 s; scan rate 100 mV s−1; scan range from −0.35 to 0.15 V. It was found that the Bi(III)-BPR complex could be accumulated on the electrode surface during the accumulation period. Then the Bi(III) in the Bi(III)-BPR complex on the CPE surface was reduced to Bi(0) during reduction interval and finally reoxidized during the anodic stripping step for voltammetric quantification. Factors affecting the accumulation, reduction, and stripping steps were investigated. Interferences by other ions were studied as well. The detection limit was found to be 5×10−10 mol l−1 with a 3 min accumulation time. The linear range was from 1.0×10−9 to 5.0×10−7 mol l−1. Application of the procedure to the determination of bismuth in water and human hair samples gave good results.  相似文献   

7.
A new chemically modified electrode (CME), -benzoinoxime (CUPRON) modified carbon paste electrode, for determining copper(II) is reported because of its excellent selectivity and sensitivity. The electrode is made by mixing a quantity of CUPRON (25%, w/w) with graphite powder (50%, w/w) and paraffin oil (25%, w/w). The CME preferentially deposits copper from the pH 8.5 NH3-NH4Cl buffer solution containing copper(II) under an open circuit and most of metal ions do not interfere with the measurements. The detection limit (S/N of three) for determining Cu(II) is 3 × 10–10 g/ml after 10 min accumulation in fast linear scan stripping voltammetric measurement. Linear calibration curves are obtained for Cu(II) concentration ranged from 1 × 10–8 M to 1 × 10–6 M. The response can be maintained with relative standard deviation of 6.0% in a 5 × 10–6 M Cu(II) solution after eight accumulation/measurement/ regeneration cycles at the same electrode surface. The effect resulted from carbon paste preparation, reduction potential, electrode renewal, electrolyte and solution pH, preconcentration time, concentration dependence, possible interference and other variables has been evaluated. As for application, the CME demonstrates its high sensitivity and copper-selectivity in complex composition samples, such as anodic mud and polluted water.  相似文献   

8.
The electrochemical responses of tannic acid have been obtained at porous pseudo-carbon paste electrode (PPCPE), polypyrrole modified carbon paste electrode (PCPE), SBA-15 modified CPE (SBA-MCPE) and carbon paste electrode (CPE) under same conditions, respectively. The results show that the sensitivity of PPCPE is the highest among all the checked electrodes. The detection limit at PPCPE is 0.01 μM, which is about 10 times lower than that at CPE and is about 5 times lower than that at PCPE or SBA-MCPE. The developed electrode PPCPE possesses a few obvious advantages and no binding reagents are needed. The surface area of PPCPE is 59.26 m2 g−1 with pores ranging from 2 to 5 μm in diameter. The PPCPE is easy to preserve and has good reusability, which affords a nice electrochemical platform for detecting tannic acid.  相似文献   

9.
The determination of cadmium using a carbon paste electrode modified with organofunctionalized amorphous silica with 2-benzothiazolethiol was investigated. The Cd(II) oxidation peak was observed around −0.80 V (vs. SCE) in phosphate buffer (pH 4.0) in differential pulse anodic stripping voltammetry. The best results were obtained under the following optimized conditions: 1 min accumulation time, 50 mV pulse amplitude, 20 mV s−1 scan rate in phosphate buffer pH 4.0. Using such parameters a linear dynamic range from 5.6×10−7 to 3.5×10−5 mol l−1 Cd(II) was observed with a sensitivity of 2.83 μA mol−1 l, limit of detection 1.0×10−7 mol l−1. Cd(II) spiked in a natural water sample was determined with 99% mean recovery at 10−7 mol l−1 level. Interference were also evaluated.  相似文献   

10.
在0.40 mol/L的NaAc-HAc(pH 4.5)缓冲液中,使用JP-303极谱分析仪,依诺沙星在碳糊电极(CPE)上有一灵敏的吸附伏安氧化峰,峰电位为1.17 V(vs.SCE).该氧化峰的二阶导数峰电流与依诺沙星的浓度在4.0×10-9~4.0×10-7 mol/L(富集90 s)范围内呈良好的线性关系,相关系数为0.995,检出限为2.0×10-9 mol/L(S/N=3,富集110 s).探讨了依诺沙星在碳糊电极上的伏安性质和电极反应机理,并且用于诺佳胶囊中依诺沙星的测定.  相似文献   

11.
A new type of disposable carbon paste mini-electrodes (CPmEs), with dimensions in the 50-300 μm range, have been fabricated by heat-shrinking the end-tip of plastic micropipette tips and filling them with carbon paste. The CPmEs have been characterized by microscopic and electrochemical means and tested as substrates for in situ plated Bi film electrodes (BiF-CPmEs), used in the determination of heavy metals by square wave anodic stripping voltammetry (SWASV). It was found that this new class of CPmEs combines the advantages of carbon paste electrodes (readily renewable surface and high surface area) with those of near-microelectrode behaviour (no stirring or electrolyte excess needed). During SWASV experiments in unstirred Pb(II) and Cd(II) solutions well-shaped stripping peaks were obtained whose height varied linearly with analyte concentration in the wide 1 × 10−8 to 10−6 M range, both in acetate buffer and unbuffered solutions. Under optimal conditions detection limits of 8 × 10−10 and 1.3 × 10−9 M were achieved for Pb(II) and Cd(II), respectively and in a trial application, these metal ions have been determined in a spiked tap water sample using a BiF-CPmE.  相似文献   

12.
The possibility of applying antimony-film modified glassy carbon electrode in sequential-injection analysis (SIA) was investigated with the objective of determining Pb(II) and Cd(II) by anodic stripping voltammetry (ASV). The conditions of antimony-film deposition concerning composition of the plating/carrier solutions, concentrations of Sb(III) and hydrochloric acid, effects of different supporting electrolyte salts, and plating potential were optimized. It was found that the antimony-film deposition on glassy carbon substrate in a sample solution consisting of 750 μg L−1 Sb(III), 0.5 mol L−1 HCl at −1.5 V (vs. Ag/AgCl/3 mol L−1 KCl) yielded a modified electrode suitable for the determination of Pb(II) and Cd(II) at the μg L−1 level. The reproducibility of the analytical signals was characterized by a relative standard deviation lower than 2.8%, and the calculated values of detection limits were 1.2 μg L−1 for Pb(II) and 1.4 μg L−1 for Cd(II). The presence of KSCN in the sample solution offers the possibility of detecting ions with more negative oxidation potentials like Zn(II), Mn(II) or Cr(III). The developed SIA-ASV procedure was compared with the commonly used batch method, and its applicability was tested on a spiked tap water sample.  相似文献   

13.
The bismuth film electrode (BiFE), in combination with anodic stripping voltammetry, offers convenient measurement of low concentrations of tin. The procedure involves simultaneous in situ formation of the bismuth film electrode on a glassy carbon substrate electrode, together with electrochemical deposition of tin, in a non-deaerated model solution containing bismuth ions, catechol as complexing agent and the metal analyte, followed by an anodic stripping scan. The BiFE is characterized by an attractive electroanalytical performance, with two distinct voltammetric stripping signals corresponding to tin, accompanied with low background contributions. Several experimental parameters were optimized, such as concentration of bismuth ions and catechol, deposition potential, deposition time and pH of the model solution. In addition, a critical comparison is given with bare glassy carbon and mercury film electrodes, revealing the superior characteristics of BiFE for measurement of tin. BiFE exhibited highly linear behavior in the examined concentration range from 1 to 100 μg L−1 of tin (R2 = 0.997), an LoD of 0.26 μg L−1 tin, and good reproducibility with a calculated R.S.D. of 7.3% for 10 μg L−1 tin (n = 10). As an example, the practical applicability of BiFE was tested with the measurement of tin in a real sample of seawater.  相似文献   

14.
A novel electrochemical methods namely standard free anodic stripping voltammetry and anodic stripping voltammetric titration are proposed for determination of dissolved sulfide concentration. 2Ag+ + S2− → Ag2S reaction is used to provide the information. The anodic stripping voltammetric response of unreacted silver-ions at the glassy carbon electrode is used as analytical signal. Results reliability and accuracy are confirmed by analysis of model solutions, spiked natural and tap waters and recovery study, with a recovery of 100 ± 5% (n = 7) obtained. The approaches show the detection limit (3σblank) of 2-5 × 10−10 mol L−1 and the relative standard deviation of 2-5% for repeated measurements.  相似文献   

15.
This paper described a facile and direct electrochemical method for the determination of ultra-trace Cu2+ by employing amino-functionalized mesoporous silica (NH2-MCM-41) as enhanced sensing platform. NH2-MCM-41 was prepared by using a post-grafting process and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy. NH2-MCM-41 modified glassy carbon (GC) electrode showed higher sensitivity for anodic stripping voltammetric (ASV) detection of Cu2+ than that of MCM-41 modified one. The high sensitivity was attributed to synergistic effect between MCM-41 and amino-group, in which the high surface area and special mesoporous morphology of MCM-41 can cause strong physical absorption, and amino-groups are able to chelate copper ions. Some important parameters influencing the sensor response were optimized. Under optimum experimental conditions the sensor linearly responded to Cu2+ concentration in the range from 5 to 1000 ng L−1 with a detection limit of 0.9 ng L−1 (S/N = 3). Moreover, the sensor possessed good stability and electrode renewability. In the end, the proposed sensor was applied for determining Cu2+ in real samples and the accuracy of the results were comparable to those obtained by inductively coupled plasma optical emission spectrometry (ICP-OES) method.  相似文献   

16.
A new modified carbon paste electrode based on multi-walled carbon nanotube and Alizarin Red S acts as a chelating agent for tellurium(IV) ions, is described. The electrochemical responses were found to be analytically suitable to develop a method for the determination of tellurium at low concentration levels. Under optimised operational conditions, the sensor exhibited linear behaviour in the range of 2.0–300 ng mL?1 (correlation coefficient: 0.9982) with a detection limit of 0.45 ng mL?1. The results indicate that the sensor is sensitive and effective for the determination of tellurium in water samples and certified reference materials.  相似文献   

17.
A catalytic adsorptive stripping voltammetric method for the determination of copper(II) on a carbon paste electrode (PCE) in an alizarin red S (ARS)-K2S2O8 system is proposed. In this method, copper(II) is effectively enriched by both the formation and adsorption of a copper(II)-ARS complex on the PCE, and is determined by catalytic stripping voltammetry. The catalytic enhancement of the cathodic stripping current of the Cu(II) in the complex results from a redox cycle consisting of electrochemical reduction of Cu(II) ion in the complex and subsequent chemical oxidation of the Cu(II) reduction product by persulfate, which reduces the contamination of the working electrode from Cu deposition and also improves analytical sensitivity. In Britton-Robinson buffer (pH 4.56±0.1) containing 3.6×10−5 mol L−1 ARS and 1.6×10−3 mol L−1 K2S2O8, with 180 s of accumulation at −0.2 V, the second-order derivative peak current of the catalytic stripping wave was proportional to the copper(II) concentration in the range of 8.0×10−10 to ∼3.0×10−8 mol L−1. The detection limit was 1.6×10−10 mol L−1. The proposed method was evaluated by analyzing copper in water and soil.  相似文献   

18.
Guo Z  Feng F  Hou Y  Jaffrezic-Renault N 《Talanta》2005,65(4):1052-1055
Bismuth film electrode (BiFE) was shown to be an attractive alternative to common mercury film electrode (MFE) for anodic stripping voltammetric measurements. In this study, bismuth film, that was in situ deposited onto glassy carbon electrode, was used to detect zinc content of milkvetch, used in traditional Chinese medicine. Variables affecting the response have been evaluated and optimized. Experimental results showed a high response, with a good linearity (between 0.5 × 10−6 mol L−1 and 3 × 10−6 mol L−1) a good precision (R.S.D. = 3.58%) and a low detection limit (9.6 × 10−9 mol L−1 with a 120 s anodic). The anodic stripping performance makes the bismuth film electrode very desirable for measurements of trace nutritive element zinc in milkvetch and should impart possible restrictions on the use of mercury electrode.  相似文献   

19.
碳糊修饰电极吸附伏安法测定食品中的锑   总被引:3,自引:0,他引:3  
研制了溴邻苯三酚红 (BPR)作修饰剂的碳糊修饰电极 ,并用此电极作工作电极建立了测定痕量锑的吸附伏安法。在选定的实验条件下 ,峰电流与Sb(Ⅲ )浓度在 8.0× 1 0 -9~ 2 .0× 1 0 -7mol L范围内呈线性关系 ,检出限为 2 .0×1 0 -9mol L ,1 0次测定相对标准偏差为 2 .0 % ,不用分离 ,可直接测定食品中痕量Sb(Ⅲ ) ,测定的回收率为 90 %~ 1 0 3%。  相似文献   

20.
The use of selective pre-concentration and differential pulse anodic stripping voltammetry (DPASV) using a carbon paste electrode modified (CPEM) with spinel-type manganese oxide has been proposed for the determination of lithium ions content in natural waters. The new procedure is based on the effective pre-concentration of lithium ions on the electrode surface containing spinel-type Mn(IV) oxide with the reduction of Mn(IV) to Mn(III) and consequently the lithium ions intercalation (insertion) into the spinel structure. The best DPASV response was reached for an electrode composition of 25% (m/m) spinel-type MnO2 in the paste, 0.1 mol l−1 tris(hydroxymethyl)aminomethane (TRIS) buffer solution of pH 8.3, scan rate of 5 mV s−1, accumulation potential of 0.3 V versus saturated calomel reference electrode (SCE), pre-concentration time of 30 s and potential pulse amplitude of 50 mV. In these experimental conditions, the proposed methodology responds to lithium ions in the concentration range of 2.8×10−6 to 2.0×10−3 mol l−1 with a detection limit of 5.6×10−7 mol l−1. The determination of the lithium ions content in different samples of natural waters samples using the proposed methodology and atomic absorption spectrophotometry are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号