首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The reaction of trans-cyclooctene with S8O yielded a novel bicyclic 1,2,3-trithiolane and trans-9,10,11-trithiabicyclo[6.3.0]undecane (7). Oxidation of the trithiolane with dimethyldioxirane yielded three monoxides, which are assigned to two isomeric 9-oxides, rel-(1R,8R,9S)-9-oxide (15) and rel-(1R,8R,9R)-9-oxide (16), and 10-oxide (17). Further oxidation of rel-(1R,8R,9S)-9-oxide (15) provided rel-(1R,8R,9S,11S)-9,11-dioxide (18) and rel-(1R,8R,9R,11S)-9,11-dioxide (19), while that of rel-(1R,8R,9R)-9-oxide (16) gave rel-(1R,8R,9R,11S)-9,11-dioxide (19) and rel-(1R,8R,9R,11R)-9,11-dioxide (20). The structures of 18 and 19 were determined by X-ray crystallography. The structures of other oxides were elucidated by the spectroscopic data and results of further chemical transformations. Two isomers, 15 and 16, isomerized to one another. A 9,11-dioxide 20 isomerized to 19, which is in equilibrium with 18, where 18 is thermodynamically the most stable isomer.  相似文献   

2.
The non-proteinogenic amino acid (2S)-2-amino-3,3-bis(4-fluorophenyl)propanoic acid [(S)-1] is a key intermediate required for the synthesis of Denagliptin (2a). Denagliptin is a dipeptidyl peptidase IV (DPP IV) inhibitor that is being developed for the treatment of type-2 diabetes mellitus. A diastereoselective, cost-efficient synthetic procedure for (S)-1 was developed by alkylating a Ni(II) glycine equivalent derived from (S)-2-[(N-benzylprolyl) amino] benzophenone [(S)-BPB]. The alkylated product was then decomposed to isolate the target amino acid (S)-1 (ee >99%) and ligand (S)-BPB, which can be reused in subsequent reactions. The enantiomer (R)-1 and racemate (rac)-1 were synthesized from their corresponding Ni(II) glycine equivalents. Denagliptin diastereomers (2), derived from the key intermediates (S)-1, (R)-1, and (rac)-1 were synthesized, and their dipeptidyl peptidase IV inhibitory activities were investigated. These findings are important in the design and synthesis of DPP IV inhibitors.  相似文献   

3.
Julia S. Crossman 《Tetrahedron》2008,64(21):4852-4867
Model linear precursors to the spiculoic acids were prepared and underwent thermally induced IMDA reactions. The configuration of C5 in the stereotriad was found to dominate any inherent endo/exo selectivity of the IMDA reaction. The isomer (2E,5S)-20 underwent the IMDA to give the spiculoic acid stereochemistry in 84% yield and 94% ds. The required stereotriads were synthesised using stereoselective substrate-controlled aldol reactions; an anti-boron aldol reaction, controlled by the π-facial preference of (S)-2-benzoyloxypentan-3-one ((S)-27) led to (5R)-(22) and a syn-titanium aldol reaction, under the stereocontrol of a chiral N-acylthiazolidinethione (42) led to (5S)-(22). Chain extension using standard Wittig, HWE and ‘modified’ Julia olefinations installed the diene and dienophile components giving the linear precursors to the IMDA reactions.  相似文献   

4.
To synthesize (3′R,5′S)-3′-hydroxycotinine [(+)-1], the main metabolite of nicotine (2), cycloaddition of C-(3-pyridyl)nitrones 3a, 3c, and 15 with (2R)- and (2S)-N-(acryloyl)bornane-10,2-sultam [(2R)- and (2S)-8] was examined. Among them, l-gulose-derived nitrone 15 underwent stereoselective cycloaddition with (2S)-8 to afford cycloadduct 16, which was elaborated to (+)-1.  相似文献   

5.
Tanja Grkovic 《Tetrahedron》2009,65(32):6335-207
A survey of the secondary metabolite chemistry profiles of New Zealand sponges of the genus Latrunculia has yielded new members of the discorhabdin A- and B-type families. The structure elucidation of (+)-(6R,8S)-1-thiomethyldiscorhabdin G/I (5) and both enantiomers of 16a,17a-dehydrodiscorhabdin W (6) are reported. Absolute configurations were assigned by comparison with a dataset of recently reported electronic circular dichroism spectra of discorhabdin alkaloids. A stereochemical correction of the recently reported natural product (+)-3-dihydrodiscorhabdin A from (3S,5R,6S,8S)-(7) to the C3-epimeric (+)-(3R,5R,6S,8S)-(8) and assignment of absolute configuration is also presented. Semi-synthesis of (+)-(3S,5R,6S,8S)-(7) from (+)-discorhabdin A provided further evidence for this structure revision. Cytotoxicity data is reported for 5-8.  相似文献   

6.
Machiko Ono  Yuki Shida 《Tetrahedron》2007,63(41):10140-10148
(±)-(4,5-anti)-4-Benzyloxy-5-hydroxy-(2E)-hexenoic acid 6 was subjected to δ-lactonization in the presence of 2,4,6-trichlorobenzoyl chloride and pyridine to give the α,β-unsaturated-δ-lactone congener (±)-7 (87% yield) accompanied by trans-cis isomerization. This δ-lactonization procedure was applied to the chiral synthesis of (+)-(4S,5R)-7 or (−)-(4R,5S)-7 from the chiral starting material (+)-(4S,5R)-6 or (−)-(4R,5S)-6. Deprotection of the benzyl group in (+)-(4S,5R)-7 or (−)-(4R,5S)-7 by the AlCl3/m-xylene system gave the natural osmundalactone (+)-(4S,5R)-5 or (−)-(4R,5S)-5 in good yield, respectively. Condensation of (−)-(4R,5S)-5 and tetraacetyl-β-d-glucosyltrichloroimidate 22 in the presence of BF3·Et2O afforded the condensation product (−)-8 (97% yield), which was identical to tetra-O-acetylosmundalin (−)-8 derived from natural osmundalin 9.  相似文献   

7.
(R)-4-Ethyl-2-(1,1-dimethylpropyl)-2-oxazoline (1) and (S)-4-tert-butyl-2-(1,1-dimethylbutyl)-2-oxazoline (2) were synthesized in two steps from the corresponding enantiopure amino alcohols and acid chlorides in a total yield of 95% and 72%, respectively. (S)-2-(1-Adamantyl-1-methylethyl)-4-isobutyl-2-oxazoline (3) was obtained from adamantyl bromide and l-leucinol in five steps in a total yield of 82%. Reactions of oxazolines 13 with Pd(OAc)2 in AcOH or CH2Cl2 followed by treatment with LiCl afforded the corresponding μ-Cl dimeric cyclopalladated complexes 15, 17, and 20 in good yield. Compounds 15, 17, and 20 reacted with PPh3 to furnish the corresponding mononuclear complexes 16, 19, and 21. The 31P NMR spectra of trans(N,P) adducts 16, 19, and 21 contained signals of two diastereomers in a ratio of ca. 1.3:1.  相似文献   

8.
The readily available 3-O-benzoyl-4-O-benzyl-1,2-O-isopropylidene-β-d-fructopyranose (6) was straightforwardly transformed into 5-azido-3-O-benzoyl-4-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (8), after treatment under modified Garegg's conditions followed by reaction of the resulting 3-O-benzoyl-4-O-benzyl-5-deoxy-5-iodo-1,2-O-isopropylidene-α-l-sorbopyranose (7) with lithium azide in DMF. O-debenzoylation at C(3) in 8, followed by oxidation and reduction caused the inversion of the configuration to afford the corresponding β-d-psicopyranose derivative 11 that was transformed into the related 3,4-di-O-benzyl derivative 12. Cleavage of the acetonide of 12 to give 13 followed by O-tert-butyldiphenylsilylation afforded a resolvable mixture of 14 and 15. Compound 14 was transformed into (2R,3R,4S,5R)- (17) and (2R,3R,4S,5S)-3,4-dibenzyloxy-2′,5′-di-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (18) either by a tandem Staudinger/intramolecular aza-Wittig process and reduction of the resulting intermediate Δ2-pyrroline (16), or only into 18 by a high stereoselective catalytic hydrogenation. When 15 was subjected to the same protocol, (2S,3S,4R,5R)- (21) and (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (22) were obtained, respectively.  相似文献   

9.
Kenji Mori 《Tetrahedron letters》2007,48(32):5609-5611
Absolute configuration of gomadalactones A (1), B (2) and C (3), the pheromone components of the white-spotted longicorn beetle (Anoplophora malasiaca) was assigned as (1S,4R,5S)-1, (1R,4R,5R)-2 and (1S,4R,5S,8S)-3 by comparing their published CD spectra with those of (1R,5R)-(+)-4,4,8-trimethyl-3-oxabicyclo[3.3.0]oct-7-ene-2,6-dione (4) and (1S,5R,8S)-(+)-4,4,8-trimethyl-3-oxabicyclo[3.3.0]octane-2,6-dione (5) prepared from (R)-(−)-carvone (6).  相似文献   

10.
A convergent synthesis of (4R,15R,16R,21S)-rollicosin (1) and (4R,15S,16S,21S)-rollicosin (2) was accomplished. Hydroxy lactone 6a and/or 6b were synthesized from 4-pentyn-1-ol, and α,β-unsaturated lactone 7 was synthesized from γ-lactone 8 and 5-hexen-1-ol. Inhibitory activity of these compounds was examined with bovine heart mitochondrial complex I.  相似文献   

11.
The new (22R,23S,25R)-3β,16β,26-triacetoxy-cholest-5-ene-22,23-diol (11a) was synthesized from diosgenin (3) through a synthetic route based on chemoselective RuO4 oxidation of (25R)-3β,16β-diacetoxy-23-ethyl-231,26-epoxycholesta-5,23(231)-dien-22-one (9) that afforded (20S,25R)-3β,16β,26-triacetoxycholest-5-ene-22,23-dione (10) which was stereoselectively reduced using NaBH4. Compound 9 was obtained from the known isomeric 22,26-epoxycholest-5-ene steroidal skeleton 8b by treatment with p-TsOH in toluene, amberlyst-15 or directly from diosgenin by treatment with BF3·OEt2/Ac2O. Chemoselective reduction of the 23-keto group of 10, was attained using NaBH4/ZnCl2 at −70 °C to give 23S-14. The NMR spectra of all compounds were unambiguously assigned based on one and two dimensional experiments and the C-22 and C-23 stereochemistry in the diacetate derivative 11b, as well as the structure of epoxycholestene 9 were further established by X-ray diffraction analyses. The new route for the functionalization of the side chain of diosgenin can find application in the synthesis of norbrassinosteroid analogues.  相似文献   

12.
Six samples [(3R,14R,26R)-, (3R,14S,26R)-, (3S,14R,26S)-, and (3S,14S,26S)-1, a mixture of (3R,14R,26S)- and (3S,14R,26R)-1, and a mixture of (3R,14S,26S)- and (3S,14S,26R)-1] of miyakosyne A [1, (4E,24E)-14-methyloctacosa-4,24-diene-1,27-diyne-3,26-diol] were synthesized starting from the enantiomers of citronellal (2), employing olefin cross metathesis and R-selective asymmetric acetylation of a stereoisomeric mixture of acetylenic alcohols with vinyl acetate and lipase PS as key reactions. Separation of the eight stereoisomer of 1 by reversed phase HPLC at −56 °C was achieved after their esterification with (1R,2R)-2-(anthracene-2,3-dicarboximido)cyclohexanecarboxylic acid (16), and the natural miyakosyne A was found to be a mixture of 95.7% of (3R,14R,26R)-1 and 4.3% of (3R,14S,26R)-1. This is different from the (3R,14S,26R)-configuration of 1 as tentatively assigned by X-ray analysis.  相似文献   

13.
The resolution by Lipase PS of rac-5 (from reduction of ketone 6, obtained from dicyclopentadiene with a new environment-friendly synthesis) gives (2S)-5, which was further reduced to the endo(2R)-1a alcohol. The endo(2S)-1b alcohol was obtained from camphor with a multistep synthesis. Pinacol couplings of 3a,b, carried out with Mg/Hg or Corey's general procedure respectively, afforded with high diastereoselectivity the C2 symmetry diols (2R,2′R)-2a and (2S,2′S)-2b, with endo oriented OH functions. The enantiogenic power of the endo alcohol (2R)-1a and (2S)-1b and of the diols (2R,2′R)-2a and (2S,2′S)-2b was tested towards the LiAlH4 reduction of acetophenone. The C2 symmetry appears to play a fundamental role.  相似文献   

14.
The coupling reaction of 1-tributylstannylthianthrene (5) and 2-tributylstannylthianthrene (7) in the presence of copper catalysts at rt afforded the thianthrene dimer 1,1′-bithianthrene (3), 2,2′-bithianthrene (8), and 1,2′-dithianthrene (9) in high yields. Also we obtained thianthrene oxide dimer (R,R) (S,S)-1-(10-S-monoxythianthrene-1-yl)thianthrene-10-S-monoxide (12) and (R,S) (S,R)-1-(10-S-monoxythianthrene-1-yl)thianthrene-10-S-monoxide (13) from 1-tributylstannyl-10-S-monoxythianthrene (10) under the same reaction condition. The final structural conformation of 3, 8, 9, and 12 was performed by X-ray crystallographic analysis. Further, the solvent effects in the coupling reactions were also examined.  相似文献   

15.
β2-(3,4-Dihydroxybenzyl)-β-alanine [β2-Homo-Dopa, 1] is a novel β-amino acid homologue of Dopa, the most successful therapeutic agent in the treatment of Parkinson's disease. Enantioenriched (R)-1 and (S)-1 were obtained via the diastereoselective alkylation of enantiopure pyrimidinone (R)- and (S)-3, chiral derivatives of β-alanine, with veratryl iodide. The major diastereomeric products (2S,5R)-4 and (2R,5S)-4 were hydrolyzed with 57% HBr, and the desired β-amino acids were purified by silica gel chromatography. Alternatively, enantioenriched (R)- and (S)-1 were prepared by means of the highly diastereoselective alkylation (3,4-dimethoxybenzyl iodide) of open-chain β-aminopropionic acid derivatives (R,R,S)-8 and (S,S,R)-8 containing the chiral auxiliary α-phenylethylamine. Finally, nearly enantiopure (R)- and (S)-1 were obtained by resolution of racemic N-benzyloxycarbonyl-2-(3,4-dibenzyloxybenzyl)-3-aminopropionic acid, rac-12, with (R)- or (S)-α-phenylethylamine, followed by catalytic hydrogenolysis.  相似文献   

16.
Colchicine mimetic (±)-4S,5R-4-nitro-5-(2,3,4-trimethoxyphenyl)cyclohexene (1) was epoxidized to afford a mixture of epoxides. The epoxides were separately converted in two steps, with high stereoselectivity, to two regioisomeric α-methoxyketones. One regioisomer, (±)-2R,4S,5R-2-methoxy-5-nitro-4-(2,3,4-trimethoxyphenyl)cyclohexanone (17), proved to be about 12-fold more potent than synthetic precursor 1 against HCT-116 tumor cells while the other regioisomer, (±)-2R,4R,5S-2-methoxy-4-nitro-5-(2,3,4-trimethoxyphenyl)cyclohexanone (16), and the synthetic intermediates tested showed no improvement in potency.  相似文献   

17.
Racemic 1-(1′-isoquinolinyl)-2-naphthalenemethanol rac-12 was prepared through a ligand coupling reaction of racemic 1-(tert-butylsulfinyl)isoquinoline rac-7 with the 1-naphthyl Grignard reagent 10. Resolution of rac-12 was achieved through chromatographic separation of the Noe-lactol derivatives 14 and 15, providing (R)-(−)-12 of >99% ee and (S)-(+)-12 of 90% ee. The ligand coupling reaction of optically enriched sulfoxide (S)-(−)-7 (62% ee) with Grignard reagent 10 furnished rac-12, with the absence of stereoinduction resulting from competing rapid racemisation of the sulfoxide 7. Reaction of optically enriched (S)-(−)-7 with 2-methoxy-1-naphthylmagnesium bromide was also accompanied by racemisation of the sulfoxide 7, and furnished optically active (+)-1-(2′-methoxy-1′-naphthyl)isoquinoline (+)-3b in low enantiomeric purity (14% ee). The absolute configuration of (+)-3b was assigned as R using circular dichroism spectroscopy, correcting an earlier assignment based on the Bijvoet method, but in the absence of heavy atoms. Optically active 2-pyridyl sulfoxides were found not to undergo racemisation analogous to the 1-isoquinolinyl sulfoxide 7, with the ligand coupling reactions of (R)-(+)- and (S)-(−)-2-[(4′-methylphenyl)sulfinyl]-3-methylpyridines, (R)-(+)-17 and (S)-(−)-17, with 2-methoxy-1-naphthylmagnesium bromide providing (−)- and (+)-2-(2′-methoxy-1′-naphthyl)-3-methylpyridines, (−)-18 and (+)-18, in 53 and 60% ee, respectively. The free energy barriers to internal rotation in 3b and 18 have been determined, and the isoquinoline (R)-(−)-12 examined as a ligand in the enantioselectively catalysed addition of diethylzinc to benzaldehyde; (R)-(−)-12 was also converted to (R)-(−)-N,N-dimethyl-1-(1′-isoquinolinyl)-2-naphthalenemethanamine (R)-(−)-19, and this examined as a ligand in the enantioselective Pd-catalysed allylic substitution of 1,3-diphenylprop-2-enyl acetate with dimethyl malonate.  相似文献   

18.
The relative configuration of tulearin A (1) is determined by X-ray diffraction analysis of a cyclic carbonate derivative 2 and the absolute configuration (2R,3R,5S,8S,9S,15R,17S) from the 9-MTPA-esters 1R and 1S is determined using the modified Mosher’s method. A mechanism for the unexpected formation of carbonate 2 is suggested. Two N-phenyltriazolinedione derivatives 3 and 4 are also prepared. Two additional tulearins, B and C (5 and 6) are isolated in very small amounts and their structures are elucidated by spectroscopic means.  相似文献   

19.
Reaction paths of the one-pot reaction of (R)-2-(α-methylbenzyl)amino-1,3-propanediol (1) and 2-chloroethyl chloroformate with DBU giving (4SR)-4-hydroxymethyl-3-(α-methylbenzyl)-2-oxazolidinone [(4S)-2] (94% de) were investigated. Intermediates of this reaction, 2-chloroethyl (2S)- and 2-chloroethyl (2R)-3-hydroxy-2-[(αR)-α-methylbenzyl]aminopropyl carbonates [(2S)-4 and (2R)-4], were synthesized individually. After the addition of DBU to the respective solution of the carbonate (2S)-4 and that of (2R)-4 in dichloromethane, the intramolecular transesterification between (2S)-4 and (2R)-4 and the diastereoselective intramolecular cyclization proceeded to afford (4S)-2 in high diastereomeric excess. Therefore, two monocarbonates (2S)-4 and (2R)-4 were kinetically resolved by this cyclization during the intramolecular transesterification between (2S)-4 and (2R)-4. We found that this process involved dynamic kinetic resolution accompanied by intramolecular transesterification.  相似文献   

20.
The synthesis of (4R,8R)- and (4S,8R)-4,8-dimethyldecanal 1 and 1a has been achieved connecting the chiral building block (R)-2-methyl-1-bromobutane 4 with (R)- and (S)-citronellol derivatives. The key intermediate 4 was obtained optically pure in five steps from methyl (S)-3-hydroxy-2-methylpropionate 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号