首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— When TCA-denatured rhodopsin was frozen in liquid nitrogen, Λmax was markedly shifted to longer wavelengths as the concentration of TCA increased. After TCA denaturation, species specific absorption disappeared and the absorption maxima of the squid pigments became identical with those of corresponding pigments of octopus.
In solutions at 5° the bathochromic shift of Λmax of TCA denatured rhodopsin was observed at higher concentrations of TCA than in the frozen state. Λmax of N-retinylidene-butylamine (NRB) was also displaced towards longer wavelengths with increasing concentrations of TCA. This bathochromic shift was enhanced by freezing. The mode of the bathochromic shift of Λmax provoked by TCA was very similar both in the cases of denatured rhodopsin and of NRB. The absorption spectrum of NRB was identical in shape with that of TCA-denatured rhodopsin, as the half-band widths of both materials were about 5500 cm-1 in the liquid state and 5000 cm-1 in the frozen state. Λmax of retinal and NRB were red shifted in polar and polarizable solvents.
It was concluded that the strong acidity and the relatively large polarizability of TCA are responsible for the bathochromic shift of Λmax of the Schiff base in TCA-denatured rhodopsin.  相似文献   

2.
Abstract— In bidistilled water, 4-thiouridine (4TU) exhibits a weak unusual luminescence, the quantum yield of which is 3 × 10-4 at 25°C. The excitation spectrum corresponds well to the 4TU absorption spectrum. The emission lies at longer wavelengths (Λmax 550 nm) than the 4TU phosphorescence observed at 77 K (Λmax, 470–480 nm). From the emission signal obtained after an excitation flash of 3 ns half-width, an "apparent" rate constant for the radiative deactivation process, shorter than 5 × 106 s, can be inferred. The 300 K emission is efficiently quenched by halides and by oxygen: quenching involves a long-lived intermediate (⋍ 200 ns).
Clearly the emissive state X is populated through the S0-S1 electronic transition π→π* of 4TU. The nature of X cannot be unambiguously determined: it cannot be an excimer but can be either the 4TU triplet state or another chemical state distinct from the 4TU excited singlet or triplet states.
An interesting finding is that the 300 K emission and the ability of 4TU to photoreact are related: they are quenched with the same efficiency by halide anions. This indicates that quenching occurs at the same long-lived intermediate species , which is either a precursor of the emitter or the emitter itself.  相似文献   

3.
Abstract— The physical and chemical properties of the triplet state of eight ortho-substituted anilides including N -formylkynurenine (FK), the major trp UV-photooxidation product and a remarkable photodynamic agent, have been investigated using both pulse radiolysis and 265 nm laser flash photolysis techniques. The molar extinction coefficient, the intersystem-crossing quantum yield and the oscillator strength of the T 1→ T n absorption band (Λmax˜ 450 nm) have been determined. It is shown that anilides having n,π* triplets readily react with most solvents whereas those having π ,π* triplets slowly react with alcohols. In both cases, the semi-reduced species are formed. In water, the formation of the semi-reduced. species most probably involves the first excited singlet state. The triplet state properties of the FK derivatives (i.e. ortho-substituted anilides having a side chain bearing charged groups such as carboxylic or amino groups) are strongly modified by the ionization state of the charged side chain. In the case of the FK derivatives possessing an uncharged amino group, quenching of the triplet state occurs via a fast reversible electron transfer reaction from the NH2 to the triplet anilide.  相似文献   

4.
Abstract— The Kubelka-Munk theory for diffuse reflectance has been applied to a quantitative study of photochromism in the crystalline state. For three systems investigated it was found possible to assign first order rate constants to the thermal relaxation process and estimate the pre-exponential factor A and the activation energy Ea in Arrhenius equation. For the fading of the red photocolored form, Λmax=490 mμ, of benzaldehyde phenylhydrazone A = 1.4×108 min-1 and Ea= 15.7 kcal mole-1. For the fading of the blue photocolored form, Λmax=590 mμ, of 2–(2,4-dinitrobenzyl)pyridine A= 5×1014 min-1 Ea =23.3 kcal mole-1, Cinnamaldehyde semicarbazone showing 'reversed phototropy' has a photoactivated state, Λmax=400 mμ, which in dark is transformed into a strongly absorbing yellow species, Λmax= 430 mμ with A = 14 × 1010 min-1 and Ea= 18.7 kcal mole-1.  相似文献   

5.
Abstract— The conventional flash photolysis of 1-methylindole in aqueous media was studied at Λexcitation≥290 nm. The transients observed 20 μs after excitation consisted mainly of the radical cation (R+). the hydrated electron (e-aq) and the triplet state (T). Electron counting experiments indicate that photoionization is the only source of R+ with e-aq/R+= 1.07±0.09 in neutral media. Quenching of the R+ yield with H+ indicates that the fluorescent state is the precursor to 80% of the photoionization events with the remainder probably arising from a prefluorescent state. The triplet decays with a lifetime of 29 μs in deaerated neutral media. This decay is unchanged by N2O saturation, but T reacts with acrylamide with k ≥2.8 × 109 M -1. In 2 M Br-, R+ and T yields are increased by factors of 2–3. Consideration of fluorescence quenching and T enhancement by Br-permits an estimate of φIsc between 0.33 and 0.49. The increased R+yield at high Br-concentrations cannot be accounted for by induced photoionization or triplet state reactions.  相似文献   

6.
Abstract— The back photoreaction from the M(412nm) intermediate in the photocycle of light-adapted bacteriorhodopsin, BRLA(570 nm), is studied using pulsed laser excitation. The decay of a primarily produced species, MP, regenerates BRLA(570nm) in a process characterized by a half life of 200 ns at 25°C. The absorption maximum of MP is blue shifted (Λmax≃ 395 nm) relative to that of M(412nm). The primary photochemical step, M(412nm) → MP, is attributed to a conformational change in the polyene residue. The energy and entropy of activation of the subsequent MP→ BRLA (570 nm) relaxation are reported and discussed.  相似文献   

7.
Abstract— The absorption spectra of the membrane-bound and of the digitonin-solubilized visual pigment of crayfish Astacus leptodactylus were investigated by conventional spectrophotometry. A method was developed to isolate purified rhabdoms almost entirely free from screening pigments from a single retina. The quantity of isolated and purified rhabdoms from a single retina was sufficient to measure the absorption spectra of the visual pigment.
The absorption spectra of the chromoprotein system (R and M) show that both the membrane-bound and the digitonin-solubilized visual pigment isomers are stable at 0°C and pH 7.0. Rhodopsin and metarhodopsin are photoreversible under these conditions without any light-induced denaturation. The difference spectra for the chromoprotein isomers and those of different photostationary states yield maximal values for ΔE at 570 and 485 nm.
At neutral pH, 0°C, Λmax of rhodopsin is 530 nm. Irradiation with light of Λ= 630 to 640 nm isomerizes rhodopsin nearly quantitatively to metarhodopsin with Λmax, of 500 nm. The molar extinction coefficient of metarhodopsin is greater than that of rhodopsin by a factor of ˜ 1.41. each measured at its respective Λmax Metarhodopsin can be isomerized to rhodopsin by irradiating at Λ > 630 nm. As the absorption spectra of the two chromoprotein isomers overlap, only part of the metarhodopsin can be reversed to rhodopsin. The maximal photoreversion can be achieved by irradiating at 460 nm. The stability of the digitonin-solubilized chromoprotein is remarkably dependent on temperature. Warming the digitonin extract of rhabdoms from 0 to 20 or 30°C caused a shift of the rhodopsin spectrum to shorter wavelengths (Λmax= 485 nm) accompanied by a decrease of EΛmax by about 30%.  相似文献   

8.
Abstract— Upon e--pulse irradiation in nonprotic solvents, all- trans retinol (ROH) and retinylmethyl ether (ROMe) form transient species (τ= 0.5–7μs, λmax=575–590 nm) identifiable as radical anions. Similar species are also formed upon laser pulse photoexcitation of these retinyl derivatives in the presence of N,N-dimethylaniline in acetonitrile. In contrast, electron transfer or attachment to all- trans retinyl acetate (ROAc) and palmitate (ROPa) results in 'instantaneous' loss of carboxylate anions from electron adducts giving the retinylmethyl radical (R-, λmax= 395 nm, τk > 100 μ,s); the radical anions in these cases are too short-lived to be detected by nanosecond pulse radiolysis. The lifetimes of radical anions of ROH and ROMe are very sensitive to water and alcohols (e.g. kq = 107 M -1 s-1 with methanol as quencher for ROH- in tetrahydrofuran). Based on these findings, the spectral dissimilarity of the one-electron reduction products from ROH and ROAc in alcohols and aqueous micelles becomes explainable in terms of fast formation of protonated radical anions (RH(OH), τ1/2, > 100 μs, λmax=370–375 nm) in the case of ROH and of retinylmethyl radical via loss of AcO- from radical anion in the case of ROAc. In tetrahydrofuran, the complexation of ROH- with cations such as Na+ and Bu4N+ affects the relative importance of its major decay modes, namely, protonation and dehydroxylation, the latter process being significantly enhanced by the presence of Na+.  相似文献   

9.
Abstract— The microsecond flash photolysis of 5-methoxyindole in aqueous solutions has been studied at γexc≥ 290 nm. Transients identified in this time realm in neutral solutions are: eaq-, the 5-methoxyindole radical cation (γmax≅ 440 nm), the neutral transient with γmax≅ 530 nm) and an unidentified oxygen sensitive transient with γmax≅ 435 nm. Radical cations and e-aq are shown to be produced in equal amounts consistent with a photoionization process as the only source of both transients. H+ quenching of fluorescence and radical cation production gives equivalent Stern-Volmer constants indicating that photoionization occurs from the fluorescent state. The unidentified oxygen sensitive transient exhibits a pK a of2–2.5 and is quenched at lower pH values indicating that it also has a fluorescent state precursor.  相似文献   

10.
Abstract— Nanosecond laser flash photolysis and pulse radiolysis have been used to generate and characterise the triplet state, and semioxidised and semireduced radicals of haematoporphyrin, and three 0 -acyl compounds derived from it (the monoacetate, the diacetate and the disuccinate).
After 347 nm irradiation in water containing 2% Triton X-100, haematoporphyrin forms the triplet state (φT= 0.92) and photoionises monophotonically (φI= 0.03). For the O -acyl derivatives, φT approaches unity and photoionisation is reduced. In acetone the triplet yield of all four compounds are close to unity. The difference and corrected spectra for the triplet species are presented and decay rates ( k 1˜104s-1) and oxygen quenching constants ( k Q˜1.5times109 M -1s-1) for the triplet state have been measured. The difference and corrected spectra for the semi-reduced species in methanol and semi-oxidised species in aqueous Triton X-100 are presented.
The photophysical characteristics in fluid solution of haematoporphyrin and its 0 -acyl derivatives are rather similar to those previously recorded for other photosensitising porphyrins.  相似文献   

11.
Abstract— Triplet-and singlet-related photoprocesses of pyrene-1-aldehyde (PA) in various solvents have been investigated in detail using 337.1 and 355 nm laser flash photolysis in conjunction with time-correlated determination of fluorescence lifetimes (τF) and steady-state photochemical and absorption-emission spectral measurements. In benzene, the lowest triplet of PA (43 < ET < 46 kcal/mol) has a lifetime of about 50 µs (τT) and displays the absorption maximum at 443 nm with a maximum extinction coefficient (εmax) of 21000 M -1cm-1; the corresponding ketyl radical has a sharp absorption maximum at 428 nm (εmax≥ 25000 M -1cm-1). The quantum yields (φT) of lowest triplet occupation are high in nonprotic solvents (0.6–0.8), decrease in protic solvents (alcohols) as the polarity of the latter is increased, and maintain a complementary relationship with the quantum yields (φF) of fluorescence. Quantum yields (φPC) of loss of PA due to photoreactions in some solvents have also been determined under conditions of steady irradiation at 366 nm; φPC is in the range 0.1–0.2 in electron-rich olefinic solvents such as cyclohexene and tetramethylethylene. These results concerning τF, τT, φF. φT and φPC as well as the effects of 1,2,4-trimethoxybenzene and 2,5-dimethyl-2,4-hexadiene as quenchers for fluorescence, triplet yield, and photochemistry are discussed in the light of possible state orders for PA in polar and nonpolar environments.  相似文献   

12.
Abstract— The triplet state of vitamin D3 in benzene has been characterised in terms of its absorption spectrum, Λmax 315 nm, its lifetime, 300 ns, its rate constant for reaction with oxygen, 4.2 times 109mol−1 s−1 and the efficiency with which it sensitizes the formation of singlet oxygen, 25%. There is a large difference in the electronic excitation energies of the spectroscopic and relaxed triplets, ˜ 237 kJ mol−1 and147–168 kJ mol−1, respectively. It has been shown that, in the endothermic situation, the vitamin D3 molecule is a 'nonvertical'acceptor of triplet energy. This is in accord with the non-planar character of its acyclic conjugated Il-system.  相似文献   

13.
Abstract— A fluorescent method has been used to study the suction blister fluid of human volunteers collected after 8-methoxypsoralen (8-MOP) oral intake. A fluorescent chromophore with spectral characteristics (Λmax= 390 nm, Λmax=470nm) distinct from 8-MOP has been detected. Our results suggest the existence of a metabolite form of 8-MOP within the patients's skin prior to any UV irradiation. This form might result in the opening of the4–5' double bond of the 8-MOP molecule.  相似文献   

14.
Abstract. Pulsed laser photolysis at 347nm has been used to study the transient spectroscopy of alloxazine, lumichrome, lumiflavin, and riboflavin in acidic (pH 2.2) aqueous solution and in ethanol. Intersystem crossing quantum yields (φISC) were determined by a modification of the comparative laser excitation method which utilizes the variation of the triplet yield with intensity in conjunction with a kinetic model for the various photophysical and photochemical processes occurring during the pulse. Fluorescence quantum yields and lifetimes are also reported. Correction for quenching of the excited singlet state by H+ ions shows that, in neutral aqueous solution, intersystem crossing for flavins is an efficient process (φISC˜ 0.7) which, in conjunction with fluorescence, accounts for the fate of all absorbed photons. For alloxazine (φISC˜ 0.45) and lumichrome (φISC˜ 0.7) the results are more difficult to interpret owing to interconversion between alloxazine and isoalloxazine structures in the singlet excited state. For all four compounds, the quantum yield of products derived from the singlet excited state is estimated as ˜0.04. There is evidence of biphotonic product formation at high laser energies. In ethanol, where φISC for lumichrome is about twice that of lumiflavin, internal conversion between the excited singlet and ground states appears to be a significant process. Complete triplet-triplet absorption spectra in the region 260–750nm are reported. For lumichrome at pH 2.2 there is spectral evidence for isomeric triplet states which appear to be in equilibrium.  相似文献   

15.
Abstract— Higher excited triplet states originating from the lowest triplet state of isoalloxazines by absorption of light with Λ - 600 nm undergo "inverse" intersystem crossing to the singlet manifold [φ( Tn-Sm ) = 8 × 10-3] followed by rapid internal conversion and "normal" fluorescence S1-S0 with Λm= 540 nm.  相似文献   

16.
Abstract —The ultraviolet irradiation (290 nm ≤Λ≤ 390 nm) of indole, purine, indazole, acridine and quinoline in 2-methyltetrahydrofuran glass at 77 K produces trapped radicals. Two electron-paramagnetic-resonance (EPR) signals are found at 77 K during illumination, one at high magnetic field (3–25 times 10-1 T) assigned to the matrix radical and the other at low field (1.3 times 10-1 to 1–5 times 10-1 T) attributed to the lowest triplet state of the heterocyclic molecule. Quantum yields for triplet production at 77 K are 0–34 for indole, 0.51 for purine, 0.55 for indazole, 0.15 for acridine, and 0.94 for quinoline. The rate of formation of matrix radicals varies as the n Rth power of the incident light intensity, I 0nR, where 1.6 ≤ n R=≤ 2. Solvent radical yields, which depend on the light intensity, have been determined. Under the experimental conditions, no signals attributable to trapped electrons or cations have been observed. The dependence of the reciprocal value of the rise lifetime of the low field EPR signal as a function of the intensity of exposure is in accordance with a biphotonic mechanism.  相似文献   

17.
THE FORMATION OF TWO FORMS OF BATHORHODOPSIN AND THEIR OPTICAL PROPERTIES   总被引:3,自引:0,他引:3  
Abstract— Using two kinds of rhodopsin preparations (digitonin extract and rod outer segments suspension), we measured changes in absorption spectra during the conversion of rhodopsin or isorhodopsin to a photosteady state mixture composed of rhodopsin, isorhodopsin and bathorhodopsin by irradiation with blue light (437 nm) at 77 K and during the reversion of bathorhodopsin to a mixture of rhodopsin and isorhodopsin by irradiation with red light (> 650 nm) at 77 K. The reaction kinetics could be expressed with only one exponential in the former case and with two exponentials in the latter case. These data suggest that both rhodopsin and isorhodopsin are composed of a single molecular species, while bathorhodopsin is composed of two molecular species, designated as bathorhodopsin1 and bathorhodopsin2. The absorption spectra of these bathorhodopsin were calculated by two different methods (kinetic method and warming-cooling method). The former was based on the kinetics of the conversion of two forms of bathorhodopsin by irradiation with the red light. The spectra obtained by this method were consistent with those obtained by the warming-cooling method. Bathorhodopsin1 and bathorhodopsin2 have Λmax at 555 and 538 nm, respectively. The two forms of bathorhodopsin are interconvertible in the light, but not in the dark. Thus, we suggest that a rhodopsin molecule in the excited state relaxes to either bathorhodopsin1 or bathorhodopsin2 through one of the two parallel pathways.  相似文献   

18.
Abstract— Ethanol and ethanol-water matrices were exposed to X-rays at 77K and the photochemistry and paths of radical conversion were investigated by EPR methods. The main X-ray induced radical, CH3ĊHOH, is probably photoionized by 254 nm light. The following radicals are produced during prolonged UV-irradiation of CH3ĊHOH radicals: ĊH3, ĊHO, H and 2 types of radicals giving singlet EPR spectra. One of these radicals (d) is bleachable with 580 nm light, ĊH3 and ĊH3ĊHOH being formed during the bleaching, the other one (e) is unbleachable and the most stable radical in the matrix during annealing. The CH3 radicals decay at 77 K (τ∽ 10 min) and produce CH3-CHOH radicals and the unbleachable radical (e). Stable H-atom signals were seen in X-irradiated ethanol-water mixtures (volume ratio 2:1) at 77 K. The H-atom signals increased during photobleaching of the trapped electrons in the matrix and during UV-photolysis of CH3CHOH radicals.  相似文献   

19.
Abstract— The mechanism of the photoreduction of 9,10-anthraquinone (AQ) in alcohol and hexane has been studied by flash photolysis. The fluorescence spectrum of the photoproduct, 9,10-dihydroxy anthracene shows a large shift between hexane and ethanol. The quantum yields of photoreduction for AQ are solvent-dependent, the reaction between the solvent radical and AQ determining the quantum yield.
The absorption spectrum of the 9,10-anthrasemiquinone (AQH.) has a long-wavelength absorption band with peaks at 631 and 678 nm. The second-order decay constants for AQH. were estimated to be 1.3 × 109, 6.7 × 108 and 2.0 × 108 M -1 sec-1 in ethanol, 2-propanol and ethylene glycol, respectively.
A long-wavelength absorption band was observed for 9,10-anthrasemiquinone radical anion, having peaks at 776 and 860 nm; epsi;max= 1900 at 776 nm. This spectrum is compared with the spectra of 9,10-dihydroxy anthracene mono- and di-anions. The 9,10-anthrasemiquinone radical anion was found to photoreduce quantitatively to 9,10-dihydroxy anthracene mono-anion with a quantum yield of 0.1.  相似文献   

20.
Abstract— Absorption spectra measurements of isolated planarian ocelli by a microspectrophotometer (MSP) and intra-ocellar recordings of the early receptor potential (ERP) were carried out in order to characterize in situ planarian rhodopsin (pRh) and its photoproducts. The MSP spectra of the isolated ocelli revealed Λmax at about 500 nm. The ERP evoked by a test stimulus was a positive monophasic waveform in the dark but became negative during exposure to violet light. During subsequent darkness, the ERP rapidly reverted to a positive waveform but with a smaller amplitude than before exposure. The ERP amplitude recovered to its initial level upon exposure to red light. The ERP experiments suggest that pRh produces two metarhodopsin intermediates, with Λmax longer than that of pRh: the metastate responsible for the negative ERP converts to another metastate that results in a smaller ERP in the dark-adapted ocellus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号