首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. The synthesis and characterization of N-[2-[[4-iodo-2,6-bis(1-methylethyl)phenyl]amino]-2-oxoethyl]-N-(carboxymethyl)glycine and N-[2-[(4-iodo-2,6-diethylphenyl)amino]-2-oxoethyl]-N-(carboxymethyl)glycine is presented, as well as a modified and improved synthesis of N-[2-[(2,4-diiodo-6-methylphenyl)amino]-2-oxoethyl]-N-(carboxymethyl)glycine. These compounds are new agents for hepatobiliary imaging.  相似文献   

2.
█tl="American"█The synthesis of the three N,N′-di(4-coumaroyl)tetramines, i.e., of (E,E)-N-{3-[(2-aminoethyl)amino]propyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] ( 1a ), (E,E)-N-{4-[(2-aminoethyl)amino]butyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] ( 1b ), and (E,E)-N-{6-[(2-aminoethyl)amino]hexyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(ethane-1,2-diyl)bis[prop-2-enamide] ( 1c ), is described. It proceeds through stepwise construction of the symmetric polyamine backbone including protection and deprotection steps of the amino functions. Their behavior on TLC in comparison with that of 1,4-di(4-coumaroyl)spermine (=(E,E)-N-{4-[(3-aminopropyl)amino]butyl}-3,3′-bis(4-hydroxyphenyl)-N,N′-(propane-1,3-diyl)bis[prop-2-enamide]; 2 ) is discussed.  相似文献   

3.
Reactions of 3-[(N-aryl-N-chloroacetyl)amino]-2-formylindoles with substituted anilines gave 1,4-diaryl-2-oxo-1,2,3,6-tetrahydro[1,4]diazepino[6,5-b]indol-4-ium chlorides and those with 4-aminopyridine yielded 4-amino-1-(1-aryl-2-oxo-2,5-dihydro-1H-pyrido[3,2-b]indol-3-yl)pyridinium chlorides. Reduction of 1,2,3,6-tetrahydrodiazepinoindol-4-ium chlorides afforded the corresponding hexahydro derivatives. An alternative synthesis of 1-(4-nitrophenyl)-3-oxo-4-phenyl-1,2,3,4,5,6-hexahydro[1,4]diazepino[6,5-b]indole from 3-[N-(4-nitrophenyl)amino]-2-[(phenylimino)methyl]indole was developed. The method involves the following sequence of transformations: reduction, chloroacetylation, and intramolecular alkylation. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2193–2199, December, 2006.  相似文献   

4.

Abstract  

5-[2-[(4-Methylphenyl)amino]ethyl]-1,3,4-oxadiazol-2(3H)-thione, 5-[2-[(4-methylphenyl)amino]ethyl]-1,3,4-oxadiazol-2(3H)-one, N-(2,5-dimethyl-1H-pyrrol-1-yl)-3-[(4-methylphenyl)amino]propanamide, and a series of N-[(phenylcarbamoyl)amino]-3-[(4-methylphenyl)amino]propanamides and 3-[(4-methylphenyl)(phenylcarbamoyl)amino]-N-[(phenylcarbamoyl)amino]propanamides, and their thio analogues were synthesized from 3-[(4-methylphenyl)amino]propanehydrazide. 1,3,4-Oxadiazole-2(3H)-thione was converted to 4-amino-2,4-dihydro-5-[2-[(4-methylphenyl)amino]ethyl]-3H-1,2,4-triazole-3-thione, whereas cyclization of N′-phenylcarbamoyl derivatives provided thiazole, oxadiazoles, and thiadiazole, as well as triazole derivatives. Two of the synthesized compounds exhibited good antibacterial activity against Rhizobium radiobacter.  相似文献   

5.
A novel four-step synthesis to the pyrrolo[2,1-c][1,4]benzodiazocine ring system is described. 1H-Pyrrole-2-carbaldehyde was alkylated with ethyl or methyl bromoacetate and the resulting ethyl or methyl (2-formyl-1H-pyrrol-1-yl)acetates oxidised with potassium permanganate to the corresponding 1-[(2-ethoxy or methoxy)-2-oxoethyl]-1H-pyrrole-2-carboxylic acids. The latter was converted into their acid chlorides by reaction with thionyl chloride and without isolation transformed into the respective methyl 2-({[1-(2-ethoxy or methoxy-2-oxoethyl)-1H-pyrrol-2-yl]carbonyl}amino)benzoates by reaction with methyl anthranilate. Dieckmann condensation of methyl 2-({[1-(2-methoxy-2-oxoethyl)-1H-pyrrol-2-yl]carbonyl}amino)benzoate provided the pyrrolo[2,1-c][1,4]benzodiazocine.  相似文献   

6.
The synthesis of C-glycosidic analogues 15–22 of N4-(2-acetamido-2-deoxy-β-D -glucopyranosyl)-L -asparagine (Asn(N4GlcNAc)) possessing a reversed amide bond as an isosteric replacement of the N-glycosidic linkage is presented. The peptide cyclo(-D -Pro-Phe-Ala-CGaa-Phe-Phe-) (CGaa = C-glycosylated amino acid; 24 ) was prepared to demonstrate that 3-[(3-acetamido-2,6-anhydro-4,5,7-tri-O-benzyl-3-deoxy-β-D -glycero-D -guloheptonoyl)amino]-2-[(9H-fluoren-9-yloxycarbonyl)amino]propanoic acid ( 22 ) can be used in solid-phase peptide synthesis. The conformation of 24 was determined by NMR and molecular-dynamics (MD) techniques. Evidence is provided that the CGaa side chain interacts with the peptide backbone. The different C-glycosylated amino acids 15–21 were prepared by coupling 3-acetamido-2,6-anhydro-4,5,7-tri-O-benzyl-3-deoxy-β-D -glycero-D -gulo-heptonic acid ( 4 ) with diamino-acid derivatives 8–14 in 83–96% yield. The synthesis of 4 was performed from 2-(acetamido-3,4,6-tri-O-benzyl-2-deoxy-β-D -glucopyranosyl) tributylstannane ( 2 ) by treatment with BuLi and CO2 in 83% yield. Similarly, propyl isocyanat yielded the glycoheptonamide 7 in 52% from 2 . Compound 2 was obtained from 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D -glucopyranose ( 1 ) by chlorination and addition of tributyltinlithium in 74% yield. A procedure for a multigram-scale synthesis of 1 is given.  相似文献   

7.
5-Hydroxy-7-alkyl-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carbonitriles (VIIb-d) and 5-hydroxy-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid, ethyl ester (VIIa) were prepared from 5-carbethoxy-4-chloro-2-phenylpyrimidine (IV) via 4-[(cyanomethyl)alkylamino[-2-phenyl-5-pyrimidinecarboxylic acid, ethyl esters (Vb-d) and 4-[(carboxymethyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid, diethyl ester (Va), respectively. The hydroxy group of the pyrrolo-[2,3-d]pyrimidines could be methylated, acetylated and tosylated. Hydrolysis of 5-methoxy-7-methyl-2-phenyl-7H-pyrrolo[2,3-d]pyrimidine-6-carbonitrile (IX) afforded the corresponding amide (X).  相似文献   

8.
Reactivities of 2-amino-4H-pyrido[1,2-a]pyrimidin-4-ones and 4-amino-2H-pyrido[1,2-a]pyrimidin-2-ones, both N,N-dialkyl and (N-alkyl, N-phenyl)substituted, when treated with the N,N-dimethylformamide/phosphorus oxychloride Vilsmeier-Haack reagent XII were compared. Starting from 2-[(N-alkyl, N-phenyl)amino] compounds IXa,b , the expected XVIa,b and XVIIa,b were obtained, which are derivatives of 12H-pyrido[1′,2′:1,2]pyrimido[4,5-b]quinoline, a novel heterocyclic system. When 2-(phenylamino) compound IXc was used a mixture of 3-formylderivative XVIII and 12H-pyrido-[1′,2′:1,2]pyrimido[4,5-b]quinolin-12-one ( XIX ) resulted from the reaction. On the other hand, 2-(dialkylamino)-4H-pyrido[1,2-a]pyrimidin-4-ones IIIa-c plainly afforded high yields of 3-formylderivatives XIVa-c. In contrast, no significant reaction occurred when 4-(dialkylamino) and 4-[(N-alkyl,N-phenyl)amino] compounds IIa-c and VIIIa,b were treated with the reagent XII , under the same as well as more severe conditions. A clear difference in the nucleophilic reactivity of C-3 position between these two classes of isomers is pointed out by the above summarized results.  相似文献   

9.
A group of fifty-five 2-[(4-11[(dialkylamino)alkyI]amino11-6-methyl-2-pyrimidinyl)amino]-benzimidazoles (VII) was synthesized in 3-88% yield by the condensation of the requisite 2-[(2-benzimidazolyl)amino]-4-chloro-6-methylpyrimidine (VI) with the appropriate polyamine in ethanol-hydrochloric acid or neat with excess amine containing potassium iodide. The 2-[(2-benzimidazolyl)amino]-6-methyl-4-pyrirnidinol precursors (V), obtained in 11-51% yield by cyclization of 2-(cyanoamino)-4-hydroxy-6-methylpyrimidine with a suitably substituted o-phenylenediamine, were chlorinated with phosphorus oxychloride to give the intermediate 2-[(2-benzimidazolyl)amino]-4-chloro-6-rnethylpyrimidines (VI) (27-99%). Oxidation of 5,6-dichloro-2-[(4-11[4-(diethylamino)-l-methylbutyl] amino 11-6-methyl-2-pyrimidinyl) amino ]benzimidazole ( 29 ) with m-chloroperbenzoic acid gave the distal N4'-oxide ( 31 ) (19%). Fusion of 2,3-uiaminopyridine with 2-(cyanoamino)-4-hydroxy-6-methylpyrimidine provided 2-[(4-hydroxy-6-tnethyl-2-pyrimidinyl)amino]-lH-imitlazo[4,5-b]pyrimidine (VIII) (30%), which upon chlori-nation with phosphorus oxychloride (63%) followed by amination with i N, N-diethylethylene-diamine afforded 2-(4-11[2-(diethylamino)ethyl] amino 11-6-methyl-2-pyrimidinyl)-lH-imidazo [4,5-b]pyridine (X) (8%). Thirty-eight of the novel 2-[(4-amino-6-methyl-2-pyrimidinyl)amino]-benzimidazoles possessed “curative” activity against Plasmodium berghei at single subcutaneous doses ranging from 20.640 mg./kg. Orally, thirty-one compounds exhibited suppressive activity against P. berghei comparable with or superior to the reference drugs 1-(p-chlorophenyl)-3-(4-11[2-(diethylarnino)ethyl]amino 11-6-methyl-2-pyrimidinyl)guanidine (I) and quinine hydrochloride, while twelve of them were 5 to 28 times as potent as I and quinine hydrochloride. Eight compounds also displayed strong suppressive activity against P. gallinaceum in chicks. 5,6-Dichloro-2-[(4-112-(diethylamino)ethyl]amino11-6-methyl-2-pyrimidinyl] benzimidazole (18) showed marked activity against a cycloguanil-resistant line of P. berghei, and the most promising member of the series, namely 5,6-dichloro-2-[(4-11[4-(diethylamino)-l-methylbutyl]amino11-6-methyl-2-pyrimidinyl)amino]benzimidazole ( 29 ) (Q = 28), was designated for preclinical toxico-logical studies and clinical trial. Structure-activity relationships are discussed.  相似文献   

10.
The syntheses and characterization of four new linear pentadentate ligands and their CoIII complexes are described: N,N′-[(pyridine-2,6-diy)bis(methylene)]bis[sarcosine] (sarmp), N,N′-[(pyridine-2,6-diyl)bis(methylene)]bis[(R)- or (S)-proline] ((R,R)- or (S,S)-promp), N,N′-[(pyridine-2,6-diyl)bis(methylene)]bis[N-(methyl)-(R)- or (S)-alanine] ((R,R)- or (S,S)-malmp); 2,2′-[pyridine-2,6-diyl]bis[(S)- or rac-N-(acetic acid)pyrrolidine] ((S,S)- or rac-bapap). The complexes were characterized and, with but one exception, complex formation is stereospecific: Δ-exo-(R,R) (or Λ-exo-(S,S)) for promp and Λ-(R,R) (or Δ-(S,S)) for bapap. The exception is [Co((R,R)- or (S,S)-malmp)H2O]ClO4 for which two forms are obtained, to which Λ-endo-(R,R) (or Δ-endo-(S,S)) and, tentatively, Δ-unsymmetric-(R,R)- (or Λ-unsymmetric-(S,S)-) configurations are assigned. X-Ray crystal structures are presented for the complexes [Co(sarmp)H2O]ClO4, [Co((S,S)-promp)H2O]ClO4, [Co(rac-bapap)H2O]ClO4 and endo-[Co(rac-malmp)H2O]ClO4. Ligand acid dissociation and CoII and FeII complex-formation constants are reported.  相似文献   

11.
Methyl 2-acetyl-3-{[2-(dimethylamino)-1-(methoxycarbonyl)ethenyl]amino}prop-2-enoate ( 4 ) and phenyl-methyl 2-acetyl-3-{[2-(dimethylamino)-1(methoxycarbonyl)ethenyl]amino}prop-2-enoate ( 5 ) were prepared in three steps from the corresponding acetoacetic esters, and used as reagents for the preparation of N3-protected 3-amino-4H-pyrido[1,2-a]pyrimidin-4-ones 10 – 12 , 5H-thiazolo[3,2-a]pyrimidin-5-one 13 , 4H-pyrido[1,2-a]-pyridin-4-one 19 and 2H-1-benzopyran-2-ones 20 – 23 . Free 3-amino-4H-pyrido[1,2-a]pyrimidin-4-ones 24 – 26 were prepared from 10 – 12 by removal of the 2-(methoxycarbonyl)-3-oxobut-1-enyl or 3-oxo-2-[(phenyl-methoxy)carbonyl]but-1-envl as N-protecting group by various methods.  相似文献   

12.
The reaction of methyl 2-bromo-6-(trifluoromethyl)-3-pyridinecarboxylate ( 1 ) with methanesulfonamide gave methyl 2-[(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridine-carboxylate ( 2 ). Alkylation of compound 2 with methyl iodide followed by cyclization of the resulting methyl 2-[methyl(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridinecarboxylate ( 3 ) yielded 1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 4 ). The reaction of compound 4 with α,2,4-trichlorotoluene, methyl bromopropionate, methyl iodide, 3-trifluoromethylphenyl isocyanate, phenyl isocyanate and 2,4-dichloro-5-(2-propynyloxy)phenyl isothiocyanate gave, respectively, 4-[(2,4-dichlorophenyl)methoxy]-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazine 2,2-dioxide ( 5 ), methyl 2-[[1-methyl-2,2-dioxido-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4-yl]oxy]propanoate ( 6 ), 1,3,3-trimethyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 7 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-[3-(trifluoromethyl)phenyl]-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 8 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-phenyl-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 9 ) and N-[2,4-dichloro-5-(2-propynyloxy)phenyl]-4-hydroxy-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2] thiazine-3-carboxamide 2,2-dioxide ( 10 ).  相似文献   

13.
Summary A linear free energy relationship is proposed between step-wise rate constants and overall stability constants of the intermediates of the type NiL(CN)x (where x = 0, 1 and 2) formed in the four step reaction mechanism of CN with NiL where L denotes aminocarboxylates viz., EDDA, NTA, HPDTA, 1,2-PDTA, TMDTA, DTPA and TTHA.EDDA: Ethylenediaminediacetic acid(N,N-1,2-ethanediylbis-glycine); NTA: Nitrilotriacetic acid[N,N-bis(carboxymethyl)glycine]; HPDTA: 2-Hydroxytrimethylenediaminetetraacetic acid(glycineN,N-(2-hydroxy-1,3-propanediyl)bis[N-(carboxymethyl)gly cine]); 1,2-PDTA: 1,2-Diaminopropanetetraacetic acid[N,N(1-methyl-1,2-ethanediyl]bis[N-(carboxymethyl)glycine]); TMDTA: Trimethylenediaminetetraacetic acid{N,N(1-methyl-1,3-ethane-diylbis[N-(carboxymethyl)glycine]}; DTPA: Diethylenetriaminepentaacetic acid (N,N-bis2[bis(carboxymethyl)amino]ethylglycine); TTHA: Triethylenetetraminehexaacetic acidN,N-ethyl-enebis{N-[2-bis(carboxymethyl)amino)ethylglycine.  相似文献   

14.
The synthesis of 7,8-dihydroxy-2-(2-methoxycarbonylethyl)-4,9-dioxa-2-azabicyclo[4.2.1]nonane- 3-thione ( 16 ) and of its parents 9-oxa-4-thia-3-thione 17 , and 9-oxa-4-thia-3-one 18 is described. The conversion of 5′-deoxy-5′-iodo-2′,3′-O, O-isopropylidene-5,6-dihydrouridin ( 1 ) into the 2-O-methyl-5,6-dihydrouridine 5 , the 5′-O-acetyl-5,6-dihydrouridine 4 , and into the N-(5-O-acetyl-2,3-O, O-isopropylidene-β-D -ribofuranosyl)-N-(2-methoxycarbonyl thyl)-urea ( 6 ) invoked 2′,3′-O, O-isopropylidene-2,5′-anhydro-5,6-dihydrouridine ( 2 ) as the common intermediate.  相似文献   

15.
Through the use of Pd(0)-catalyzed coupling between 2- and 4-formyl-3-thiopheneboronic acid and 4-iodo-3-aminopyridine ( 1 ) and 3-bromo-2-aminopyridine, convenient one-pot procedures for the preparation of thieno[2,3-c]-1,7-naphthyridine ( 2 ), thieno[3,4-c]-1,7-naphthyridine ( 3 ), thieno[2,3-c]-1,8-naphthyridine ( 6 ) and thieno[3,4-c]-1,8-naphthyridine ( 7 ) have been developed. Thieno[3,2-c]-1,7-naphthyridine ( 4 ) and thieno[3,2-c]-1,8-naphthyridine ( 8 ) were obtained through the coupling of 2-tri-n-butylstannyl-3-thiophenaldehyde with 2,2-dimethyl-N-(4-iodo-3-pyridinyl)propanamide and 3-bromo-2-acetamidopyridine ( 1 ). The yield of 8 was further increased when copper(II) oxide was used as the co-reagent. The 13C nmr spectra of the six isomeric thieno[c]-fused 1,7- and 1,6-naphthyridines are discussed.  相似文献   

16.
A series of new 2-[2-(2,6-dichlorophenyl)amino]phenyl methyl-3-[(5-substituted phenyl)-1,5-dihydro-1H-pyrazol-3-yl-amino]-6-iodoquinazolin-4(3H) ones (6a–m) have been synthesized by the reaction of 2-[2-(2,6-dichlorophenyl)amino]phenyl methyl-3-substituted phenyl acryl amido-6-iodoquinazolin-4(3H) ones with hydrazine hydrate in the presence of glacial acetic acid. The chalcone (5a–m) have been prepared by the condensation of 2-[2-(2,6-dichlorophenyl)amino]phenyl methyl-3-acetamido-6-iodoquinazolin-4(3H) one with different substituted aromatic aldehyde. The compound 1 on treatment with 5-iodoanthranilic acid in pyridine undergoes cyclisation gave 2-[2-(2,6-dichlorophenyl)amino]phenyl methyl-6-iodo-3,1-benzoxazin-4(3H) one (2). Treatment on benzoxazine with hydrazine hydrate gave 3-amino-2-[2-(2,6-dichlorophenyl)amino]phenyl methyl-6,8-dibromo quinazolin-4(3H) one (3) followed by acetylation synthesized 2-[2-(2,6-dichlorophenyl)amino]phenyl methyl-3-acetamido-6,8-dibromoquinazolin-4(3H)-one (4). The structure of synthesized compounds has been elucidated by IR, 1H NMR, 13C NMR and elemental analysis. The products were screened for antibacterial and antifungal activity. Among the series containing some of the compounds showed promising results against standard drugs.  相似文献   

17.
The synthesis of a 1,4-disubstituted dihydropyridine, 1-(E-1[125I]iodo-1-penten-5-yl)-4-(β-N-acetylaminoethyl)-1,4-dihydropyridine ([125I] 10 ), is described. Acetylation of 4-(β-aminoethylpyridine) with acetic anhydride followed by condensation with E-1-borono-5-iodo-1-pentene ( 7 ) gave 1-(E-1-borono-1-penten-5-yl)-4-(β-N-acetylaminoethyl)pyridinium iodide ( 8 ). Chloramine-T and sodium iodide iodination of 8 gave the corresponding E-1-iodo compound 9 which was reduced with sodium borohydride to furnish 1-(E-1-iodo-1-penten-5-yl)-4-(β-N-acetylaminoethyl)-1,4-dihydropyridine ( 10 ). The corresponding radioiodinated compound was prepared similarly using Na[125I]. The tissue distribution studies in rats indicate that [125I] 10 crosses the blood brain barrier (0.49% dose/g in the brain) but gradually washes out from the brain.  相似文献   

18.
Supramolecular complexes of calix[4]resorcinolarene tetramethylsulfonate with certain organophosphorus compounds, such as dimethyl (1,1-dimethyl-3-oxobutyl)phosphonate, 1-O-[bis(N,N-diethylamino)thiophosphinoyl]-3,5-O-[(N,N-diethylamino)thiophosphonoyl)-2,4-O-methylenexylitol, and 2-O-[bis(N,N-diethylamino)thiophosphinoyl]-3,5-O-[(N,N-diethylamino)thiophosphonoyl)-1,4-anhydroxylitol, were prepared in aqueous and organic media. The complexes were isolated and characterized by elemental analysis and 1H and 13C NMR spectroscopy.  相似文献   

19.
This report describes the synthesis of derivatives of two nitrogen tetracyclic ring systems, respectively 9H,11H-pyrimido[4,3-c]pyrrolo[1,2-a][1,4]benzodiazepine and spiro[piperidine-4,4′-[4H]pyrrolo[1,2-a][1,4]-benzodiazepine], by the use of the diethyl ester of 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepine-4,4-diacetic acid as a synthon. This compound was obtained by condensation of 1-(2-aminomethylphenyl)-1H-pyrrole with diethyl 1,3-acetonedicarboxylate in acid medium. Pyrimidopyrrolobenzodiazepine derivatives were obtained by treating either the pyrrolobenzodiazepine 4,4-diacetate or the related 4-methyl-4-acetate with phenylisocyanate in boiling diethyl ether in the presence of sodium metal. The structure of 12,13-dihydro-11,13-dioxo-12-phenyl-9H,11H-pyrimido[4,3-c]pyrrolo[1,2-a][1,4]benzodiazepine, a product formed by loss of an acetate unit when 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepine-4,4-diacetate, sodium metal and phenyl-isocyanate reacted in boiling xylene, was proved by catalytic reduction to 11,13-dioxo-12-phenyl-12,13,14,14a-tetrahydro-9H,11H-pyrimido[4,3-c]pyrrolo[1,2-a][1,4]benzodiazepine, which was synthesized by unambiguous pathway via 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepine-4-acetate. The 2,6-dioxospiro[piperidine-4,4′-[4H]pyrrolo[1,2-a][1,4]benzodiazepine] derivatives were synthesized from the N-BOC derivative of 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepine-4,4-diacetic acid diethyl ester, by hydrolysis followed by treatment with 2 equivalents of 1,1′-carbonyldiimidazole (CDI) and then with aniline or benzylamine. Removal of BOC from the N-phenyl-2,6-dioxopiperidine derivative was obtained by heating the related spiroderivative in toluene in the presence of p-toluenesulphonic acid. Similar reaction failed when the N-benzyl-2,6-dioxopiperidine analog was used as substrate.  相似文献   

20.
2-(2,6-Dimethylpyrimidin-4-ylaminobenzimidazole) (VIIa) and 2-(1,3,4-thiadiazol-2-ylamino)benzimidazole (VIIb) underwent a ring-closure reaction with phosgene giving 1,3-dimethyl-12H-benzirnidazo[1,2-a]pyrirnido[6,1][-d][1,3,5]triazin-12-one (IIa) and 5H-benzimidazo[1,2-a][1,3,4]thiadiazolo[2,3-d][1,3,5]triazin-5-one (IIb) two hitherto unknown heterocyclic systems. A convenient synthesis of 2,6-dimethyl-4-aminopyrimidine is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号