首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We have developed a method to study the theory of charge pumping through a continuous quantum wire using the invariant imbedding approach. Using this method, the general properties of quantum charge pumping, with and without inclusion of many-body interactions are investigated. Using the invariant imbedding approach allows us to address directly the complex reflection (R) and transmission (T) matrices across the wire instead of considering the spectrum of the Schrodinger equation. Using the Kohn-Sham version of density functional theory (DFT), the many-body interactions in the quantum wire is investigated. We calculated the pumped current in those two cases. In the case of ignoring the many-body effects, the pumped current depends on the width of the driven potential barriers and in the case of nonequality of the width of barriers, our study predicts a nonzero charge pumping at the phase difference φ=0 even when the driving potentials are equal. In the second case, although the pumped current had sinusoidal dependence on φ but its value significantly decreased and we also observed nonzero pumping at φ=0 even when the driving potentials and their widths are equal, which is consistent with the recent experimental result.  相似文献   

2.
Pumping of charge (Q) in a closed ring geometry is not quantized even in the strict adiabatic limit. The deviation form exact quantization can be related to the Thouless conductance. We use the Kubo formalism as a starting point for the calculation of both the dissipative and the adiabatic contributions to Q. As an application we bring examples for classical dissipative pumping, classical adiabatic pumping, and in particular we make an explicit calculation for quantum pumping in case of the simplest pumping device, which is a three site lattice model. We make a connection with the popular S-matrix formalism which has been used to calculate pumping in open systems.  相似文献   

3.
We study the spin polarized currents generation in a magnetic (ferromagnetic/ferromagnetic) tunnel junction by means of adiabatic quantum pumping. Using a scattering matrix approach, it is shown that a pure spin current can be pumped from one ferromagnetic lead into the adjacent one by adiabatic modulation of the magnetization and the height of the barrier at the interface in absence of external bias voltage. We numerically study the characteristic features of the pure spin current and discuss its behavior for realistic values of the parameters. We show that the generated pure spin current is robust with respect to the variation of the magnetization strength, a very important feature for a realistic device, and that the proposed device can operate close to the optimal pumping regime. An experimental realization of a pure spin current injector is also discussed.  相似文献   

4.
We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin dependent by the application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector.  相似文献   

5.
《Physics letters. A》2014,378(18-19):1316-1320
We study one-dimensional topological models with dimerization and trimerization and show that these models can be generated using interaction or optical superlattice. The topological properties of these models are demonstrated by the appearance of edge states and the mechanism of dimerization and trimerization is analyzed. Then we show that a quantum pumping process can be constructed based on each one-dimensional topological model. The quantum pumping process is explicitly demonstrated by the instantaneous energy spectrum and local current. The result shows that the pumping is assisted by the gapless states connecting the bands and one charge is pumped during a cycle, which also defines a nonzero Chern number. Our study systematically shows the connection of one-dimensional topological models and quantum pumping, and is useful for the experimental studies on topological phases in optical lattices and photonic quasicrystals.  相似文献   

6.
Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the antiadiabatic regime in the presence of dissipation, and find general and explicit analytical expressions for the pumped current in a minimal model describing a system with the topology of a ring forced by a periodic modulation of frequency ω. The solution allows following in a transparent way the evolution of pumped dc current from much smaller to much larger ω values than the other relevant energy scale, the energy splitting introduced by the modulation. We find and characterize a temperature-dependent optimal value of the frequency for which the pumped current is maximal.  相似文献   

7.
We propose a mechanism of quantum pumping mediated by the spectral flow in a voltage-biased superconductor/insulator/normal-metal/insulator/superconductor quantum junction and realized via the sequential closing of the minigaps in the energy spectrum in resonance with the Josephson frequency. We show that the pumped dc current exhibits giant peaks at rational voltages.  相似文献   

8.
We analyze theoretically adiabatic quantum pumping through a normal conductor that couples the normal regions of two superconductor - normal-metal - superconductor Josephson junctions. By using the phases of the superconducting order parameter in the superconducting contacts as pumping parameters, we demonstrate that a nonzero pumped charge can flow through the device. The device exploits the evolution of the superconducting phases due to the ac Josephson effect, and can therefore be operated at very high frequency, resulting in a pumped current as large as a few nanoamperes. The experimental relevance of our calculations is discussed.  相似文献   

9.
We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that, at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blockade peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency, and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.  相似文献   

10.
We study a method to generate pure spin current in monolayer graphene over a wide range of Fermi energy by adiabatic quantum pumping. The device consists of three gate electrodes and two ferromagnetic strips, which induce a spin-splitting in the graphene through the proximity effect. A pure spin current is generated by applying two periodic oscillating gate voltages. We find that the pumped pure spin current is a sensitive oscillatory function of the Fermi energy. Large spin currents can be found at Fermi energies where there are Fabry-Perot resonances in the barriers. Furthermore, we analyze the effects of the parameters of the system on the pumped currents. Our predicted pumped spin current can be of the order of 100 nA which is measurable using the current technology. The proposed method is useful in the realization of graphene spintronic devices.  相似文献   

11.
We propose and analyze a new scheme of realizing both spin filtering and spin pumping by using ac-driven double quantum dots in the Coulomb blockade regime. By calculating the current through the system in the sequential tunneling regime, we demonstrate that the spin polarization of the current can be controlled by tuning the parameters (amplitude and frequency) of the ac field. We also discuss spin relaxation and decoherence effects in the pumped current.  相似文献   

12.
13.
We have investigated pumping in quantum dots from the perspective of non-Abelian (matrix) Berry phases by solving the time-dependent Schrödinger equation exactly for adiabatic changes. Our results demonstrate that a pumped charge is related to the presence of a finite matrix Berry phase. When consecutive adiabatic cycles are performed the pumped charge of each cycle is different from that of the previous ones.  相似文献   

14.
The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green?s function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring.  相似文献   

15.
We introduce stochastic and quantum finite-state transducers as computation-theoretic models of classical stochastic and quantum finitary processes. Formal process languages, representing the distribution over a process’ behaviors, are recognized and generated by suitable specializations. We characterize and compare deterministic and nondeterministic versions, summarizing their relative computational power in a hierarchy of finitary process languages. Quantum finite-state transducers and generators are a first step toward a computation-theoretic analysis of individual, repeatedly measured quantum dynamical systems. They are explored via several physical systems, including an iterated-beam-splitter, an atom in a magnetic field, and atoms in an ion trap—a special case of which implements the Deutsch quantum algorithm. We show that these systems’ behaviors, and so their information processing capacity, depends sensitively on the measurement protocol.  相似文献   

16.
We present a general formalism to study adiabatic pumping through interacting quantum dots. We derive a formula that relates the pumped charge to the local, instantaneous Green's function of the dot. This formula is then applied to the infinite-U Anderson model for both weak and strong tunnel-coupling strengths.  相似文献   

17.
18.
We investigate theoretically charge and spin pumps based on a linear configuration of quantum dots (quantum wire) which are disturbed by an external time-dependent perturbation. This perturbation forms an impulse which moves as a train pulse through the wire. It is found that the charge pumped through the system depends non-monotonically on the wire length, N. In the presence of the Zeeman splitting pure spin current flowing through the wire can be generated in the absence of charge current. Moreover, we observe electron pumping in a direction which does not coincide with the propagation direction of the pulse and the spin pumping direction (spin-charge separation). Additionally, on-site spin-flip processes significantly influence electron transport through the system and can also reverse the charge current direction.  相似文献   

19.
The feasibility of generating polarized and unpolarized current in silicene by means of quantum pumping is discussed within the framework of Floquet scattering matrix. Charge pumping current is induced at zero magnetization splitting whereas spin and valley pumping current emerge when the symmetry between Dirac points K and K′ is broken. The intensity and direction of pumped current are shown to be dependent on pumping amplitude, phase between barriers, exchange energy and electric field. By careful control of external parameters, it is demonstrated that the ferromagnetic-silicene junction could be operated as a pump device that generates pure spin and valley pumping current.  相似文献   

20.
We study quantum information transmission over multiparty quantum channel. In particular, we show an equivalence of different capacity notions and provide a multiletter characterization of a capacity region for a general quantum channel with k senders and m receivers. We point out natural generalizations to the case of two-way classical communication capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号