首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We investigate the joint effects of the intralead electron interaction and Coulombic dot–lead interaction on the shot noise of a quantum dot coupled to Luttinger liquid leads. A formula of the shot noise is derived by applying the nonequilibrium Green function technique. The shot noise is enhanced by the dot–lead interaction. For a weak or moderately strong interaction the differential shot noise demonstrates resonant-like behavior as a function of bias and gate voltages. In the limit of strong interaction resonant behavior disappears and the differential shot noise and Fano factor scale as a power law in bias voltage. Under some parameters, the differential shot noise may become negative around resonant peaks, and the physical reason is analyzed.  相似文献   

2.
In this paper we investigate the joint effects of the electron-phonon interaction and an external alternating (ac) gate voltage on the spectral density of shot noise through a vibrating quantum dot system, by applying the Lang-Firsov canonical transformation and the Keldysh nonequilibrium Green's function (NGF) technique. We find that the effects of the electron-phonon and electron-photon interaction on the differential shot noise are different. The main resonant peak of the differential shot noise is decreased only when a time-dependent gate voltage is imposed on quantum dot. With the ac field amplitude increasing, the main resonant peak of the differential shot noise decreases. The Fano factor of the system, which exhibits the deviation of shot noise from the Schottky formula, is also studied. Super-Poissonian shot noise appears due to the photon absorption (emission) processes in the low bias voltage region.  相似文献   

3.
电-声子耦合强度对量子点系统噪声的影响   总被引:1,自引:1,他引:0  
利用Lang-Firsov正则变换和Keldysh非平衡格林函数方法研究了低温下具有电子-声子相互作用的量子点系统的噪声.我们特别注意了电-声子耦合强度的变化对量子点系统噪声的影响.数值结果表明:随着电-声子耦合强度的增大,系统的噪声增大,同时微分噪声谱中会出现一系列的声子伴带峰,峰的高度和数目对电-声子耦合强度的变化非常敏感.我们也研究了系统的Fano因子,它显示系统噪声对肖特基(Schottky)公式的偏离.在高偏压区,Fano因子随着电-声子耦合强度的增大而增大.  相似文献   

4.
利用Lang-Firsov正则变换和Keldysh非平衡格林函数方法研究了低温下具有电子-声子相互作用的量子点系统的噪声。我们特别注意了电-声子耦合强度的变化对量子点系统噪声的影响。数值结果表明:随着电-声子耦合强度的增大,系统的噪声增大,同时微分噪声谱中会出现一系列的声子伴带峰,峰的高度和数目对电-声子耦合强度的变化非常敏感。我们也研究了系统的Fano因子,它显示系统噪声对肖特基(Schottky)公式的偏离。在高偏压区,Fano因子随着电-声子耦合强度的增大而增大。  相似文献   

5.
Qiao Chen 《Physics letters. A》2008,372(15):2714-2719
We have investigated the spectral density of shot noise of the system with a quantum dot (QD) coupled to two single-wall carbon nanotube terminals, where a rotating magnetic field is applied to the QD. The carbon nanotube (CN) terminals act as quantum wires which open quantum channels for electrons to transport through. The shot noise and differential shot noise exhibit novel behaviors originated from the quantum nature of CNs. The shot noise is sensitively dependent on the rotating magnetic field, and the differential shot noise exhibits asymmetric behavior versus source-drain bias and gate voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula. The super-Poissonian and sub-Poissonian shot noise can be achieved in different regime of source-drain bias.  相似文献   

6.
常博  梁九卿 《中国物理 B》2011,20(1):17307-017307
We have studied the quantum fluctuations of inelastic spin-electron scattering in quantum dot with an embedded biaxial single molecule-magnet and particularly investigated the zero-frequency shot noise and Fano factor in different magnetic fields. It is found that the shot noise and Fano factor exhibit a stepwise behaviour as bias increases in the presence of interaction between the electron and molecule-magnet for a weak magnetic field. As magnetic field becomes strong, a dip is displayed in the shot-noise-bias curve due to the suppression of inelastic shot noise caused by the quantum tunneling of magnetisation. Because of the spontaneous inelastic tunneling at zero bias, a small shot noise occurs, which results in the case of Fano factor F >> 1. Moreover, our results show that the sweeping speed can also influence the shot noise and Fano factor obviously.  相似文献   

7.
We study the shot noise of a strongly correlated quantum dot weakly coupled to Luttinger liquid leads in the Kondo regime by means of the extended equation of motion method. A general zero-frequency shot noise formula with good convergence is derived. The shot noise exhibits a non-monotonic dependence on voltage for weak intralead interaction. There is a peak around the Kondo temperature at low voltage when the interaction is very weak, and its height decreases rapidly with the intralead interaction increasing. When the interaction is moderately strong the peak disappears and the shot noise scales as a power law in bias voltage, indicating that the intralead electron interaction suppresses the shot noise. It is possible that the measurements of the shot noise spectrum can extract the information of the intralead interaction.  相似文献   

8.
We study sequential tunneling through a metallic nanoparticle close to the Stoner instability coupled to parallel magnetized electrodes. Increasing the bias voltage successively opens transport channels associated with excitations of the nanoparticle's total spin. For the current this leads just to a steplike increase. The Fano factor, in contrast, shows oscillations between large super-Poissonian and sub-Poissonian values as a function of bias voltage. We explain the enhanced Fano factor in terms of generalized random-telegraph noise and propose the shot noise as a convenient tool to probe the mesoscopic Stoner instability.  相似文献   

9.
We show experimentally that even when no bias voltage is applied to a quantum conductor, the electronic quantum partition noise can be investigated with GHz radio frequency excitation. Using a quantum point contact configuration as the ballistic conductor we are able to make an accurate determination of the partition noise Fano factor resulting from the photon-assisted shot noise. Applying both voltage bias and rf irradiation we are able to make a definitive quantitative test of the scattering theory of photon-assisted shot noise.  相似文献   

10.
It is shown that measurements of zero-frequency shot noise can provide information on electron-electron interaction, because the strong interaction results in the nonlinear voltage dependence of the shot noise in metallic wires. This is due to the fact that the Wiedemann-Franz law is no longer valid in the case of considerable electron-electron interaction. The deviations from this law increase the noise power and make it strongly dependent on the ratio of electron-electron and electron-impurity scattering rates.  相似文献   

11.
We have investigated the spectral density of shot noise for an ultra-small quantum dot(QD) system in the Coulomb blockade regime when irradiated with microwave fields (MWFs) by employing a nonequilibrium Green’s function technique. The shot noise is sensitive to Coulomb interaction, and the photon-assisted Coulomb blockade behaviour strongly modifies the mesoscopic transport. We have calculated the first and second derivatives of shot noise in the strong and weak coupling regimes to compare the theoretical results with existing experimental results. In the strong coupling regime, the first and second derivatives of shot noise display Fano type peak-valley structures around the charging channel 2E c due to Coulomb interaction. When the magnitudes of the MWFs are sufficiently large, the system displays channel blockade due to photon irradiation. The photon-assisted and Coulomb blockade steps in the noise — as well as the resonant behaviour in the differential noise — are smeared by increasing temperature. The Coulomb interaction suppresses the shot noise, but the ac fields can either suppress the shot noise(balanced case) or enhance the shot noise(unbalanced case). The suppression of shot noise caused by ac fields in the balanced case is greater than that caused by Coulomb interaction in our system. Super-Poissonian shot noise may be induced due to the compound effects of strong Coulomb interaction and photon absorption-emission processes.  相似文献   

12.
We have measured shot noise in single-walled carbon nanotubes with good contacts at 4.2 K at low frequencies (f=600-850 MHz). We find a strong modulation of shot noise over the Fabry-Perot pattern; in terms of the differential Fano factor the variation ranges over 0.4-1.2. The shot noise variation, in combination with differential conductance, is analyzed using two (spin-degenerate) modes with different, energy-dependent transmission coefficients. Deviations from the predictions from Landauer-Buttiker formalism are assigned to electron-electron interactions.  相似文献   

13.
We have investigated the spectral density of shot noise for the system of a quantum dot (QD) coupled to two single-wall carbon nanotube terminals irradiated with a microwave field on the QD. The terminal features are involved in the shot noise through modifying the self-energy of QD. The contributions of carbon nanotube terminals to the shot noise exhibit obvious behaviors. The novel side peaks are associated with the photon absorption and emission procedure accompanying the suppression of shot noise. The shot noise in balanced absorption belongs to sub-Poissonian, and it is symmetric with respect to the gate voltage. The differential shot noise displays intimate relation with the nature of carbon nanotubes and the applied microwave field. It exhibits asymmetric behavior for the unbalanced absorption case versus gate voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula, and the structures of terminals obviously contribute to it. The super-Poissonian and sub-Poissonian shot noise can be achieved in the unbalanced absorption in different regime of source-drain bias.  相似文献   

14.
We study the electrical transport properties of well-contacted ballistic single-walled carbon nanotubes in a three-terminal configuration at low temperatures. We observe signatures of strong electron-electron interactions: the conductance exhibits bias-voltage-dependent amplitudes of quantum interference oscillation, and both the current noise and Fano factor manifest bias-voltage-dependent power-law scalings. We analyze our data within the Tomonaga-Luttinger liquid model using the nonequilibrium Keldysh formalism and find qualitative and quantitative agreement between experiment and theory.  相似文献   

15.
We report on shot noise measurements in carbon nanotube based Fabry-Perot electronic interferometers. As a consequence of quantum interference, the noise power spectral density oscillates as a function of the voltage applied to the gate electrode. The quantum shot noise theory accounts for the data quantitatively and allows us to determine directly the transmissions of the two channels characterizing the nanotube. In the weak backscattering regime, the dependence of the noise on the backscattering current is found weaker than expected, pointing either to electron-electron interactions or to weak decoherence.  相似文献   

16.
The photon-assisted shot noise through a quantum dot in the Kondo regime is investigated by applying time-dependent canonical transformation and non-crossing approximation technique. A basic formula for the photon-assisted shot noise is obtained. The rich dependence of the shot noise on the external ac field and temperature is displayed. At low temperature and low frequencies, the differential shot noise exhibits staircase behavior. When the temperature increases, the steps are rounded. At elevated frequencies, the photon-assisted tunneling becomes more obvious. We have also found that the Fano factor is enhanced as the ac frequency is enhanced.  相似文献   

17.
李桂琴  郭永 《中国物理 B》2013,22(11):117304-117304
The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green’s function.It is found that the shot noise and Fano factors can be tuned by changing the structures,the size,and the coupling strength.The shot noise is suppressed momentarily as we switch on the bias voltage,and the electron correlation is significant.The Fano factors are more sensitive to the ribbon width than to the ribbon length in the full coupling context.In the weak-coupling context,the Fano factors are almost invariant with the increase of length and width over a wide bias range.  相似文献   

18.
We measure the current and shot noise in a quantum dot in the Kondo regime to address the nonequilibrium properties of the Kondo effect. By systematically tuning the temperature and gate voltages to define the level positions in the quantum dot, we observe an enhancement of the shot noise as temperature decreases below the Kondo temperature, which indicates that the two-particle scattering process grows as the Kondo state evolves. Below the Kondo temperature, the Fano factor defined at finite temperature is found to exceed the expected value of unity from the noninteracting model, reaching 1.8±0.2.  相似文献   

19.
The tunnel magnetoresistance (TMR) in an Aharonov–Bohm interferometer with two quantum dots inserted in its arms, which is attached to ferromagnetic leads with parallel and antiparallel magnetic configurations, is theoretically studied by means of the nonequilibrium Green’s function technique. We pay particular attention to the influence of an applied magnetic flux on the characteristics of the TMR. In the linear response regime (the external bias voltage V→0) and when the electrons are free from intradot Coulomb interaction, the magnetic flux only changes the peak or dip positions of the TMR. But in the presence of intradot Coulomb repulsion, its peak or dip positions, signs and magnitude are tuned by the magnetic flux. For the nonlinear response regime (V≠0), the TMR is symmetric with respect to zero bias voltage and the magnetic flux can influence its magnitude, signs and the peak positions regardless of the existence of intradot Coulomb interaction. The behavior of the TMR is interpreted in terms of the quantum interference (Fano) effect.  相似文献   

20.
We have investigated the shot noise in the mesoscopic system composed of a quantum dot (QD) coupled to ferromagnetic terminals under the perturbation of ac fields. The shot noise has been derived using the nonequilibrium Green's function (NGF) technique to describe the spin polarization effect along with photon absorption and emission processes in the Coulomb blockade regime. We have examined the influence of spin polarization on the shot noise under the perturbation of ac fields in the nonadiabatic regime. The Coulomb blockade effect results in the modification of shot noise compared with the noninteracting case. The spin orientation contributes a spin valve effect for controlling electron tunnelling through this QD, and different resonant forms appear around the Coulomb blockade channel. The photon-assisted spin-splitting and spin-polarization effect contributes a photon-assisted spin valve to adjust the electron tunnelling current and shot noise. The spin-polarization effect varies the value of the Fano factor. However, it does not change the noise type from sub-Poissonian to super-Poissonian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号