首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The preparation, thermal, morphological, and ion-conducting properties of new composite membranes based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) and nitrilotri(methylphosphonic acid) (NMPA)/hexagonal boron nitride (hBN) were carried out throughout this work. Fourier transform infrared (FTIR) spectroscopy was used to characterize the interactions between host polymer, NMPA, and inorganic additive, hBN. Thermal properties of the materials were examined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) tests. TGA results illustrated that all composite membranes are thermally stable up to 200 °C. The surface topography of the films was investigated by scanning electron microscopy (SEM) and verified that hBN uniformly dispersed into the PAMPS-NMPA matrix. The crystallinity of the membranes was characterized by using X-ray diffraction (XRD). X-ray patterns support semicrystalline nature of the composite materials. At anhydrous conditions, the maximum proton conductivity was found as 3.2?×?10?5 S cm?1 at 150 °C for PAMPS-NMPA-3hBN via impedance analyzer.  相似文献   

2.
N-octadecane/expanded graphite composite phase-change materials were prepared by absorbing liquid n-octadecane into the expanded graphite. The n-octadecane was used as the phase-change material for thermal energy storage, and the expanded graphite acted as the supporting material. Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermal diffusivity measurement were used to determine the chemical structure, crystalline phase, microstructure and thermal diffusivity of the composite phase-change materials, respectively. The thermal properties and thermal stability were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results indicated that the composite phase-change materials exhibited the same phase-transition characteristics as the n-octadecane and their latent heat increased with the n-octadecane content in composite phase-change materials. The SEM results showed that the n-octadecane was well absorbed in the porous network of the expanded graphite, and there was no leakage of the n-octadecane from the composites even when it was in the molten state.  相似文献   

3.
A fully aromatic poly(benzimidazole-imide) (PBI) containing triazole side units and amine-modified multi-wall carbon nanotube (MWCNT)/PBI composites were fabricated via a polymerization process of monomer reactants and solution mixing with ultrasonication excitation. The polymer and composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. According to the microscopic characterizations, the MWCNTs homogeneously dispersed in the composites. The mechanical properties of the composite films were also measured by tensile test. The test results evidently indicated that the Young’s modulus increased by about 60.0% at 1 wt% CNT loading, and further modulus growth was observed at higher filler loading. The composite films hold preferable thermal stability the same as the pure PBI. The improvement of the mechanical and thermal properties was attributed to the incorporation of the surface modified CNTs. For CNT-reinforced polymer composites, strong interfacial adhesion and uniform dispersion of CNTs are more crucial factors for improving such properties.  相似文献   

4.
Wettability of glass/epoxy and carbon/epoxy composites materials has been determined via sessile drop technique. Good-Van Oss approach has been used to evaluate surface free energy parameters of smooth and rough surfaces. Results obtained point out the influence of fibre reinforcement on surface free energy of composite materials. In addition, the interest of surface treatment to increase surface roughness has been discussed in terms of wettability. To sum up, results obtained clearly demonstrate the necessity of considering properties of a given composite surface not only as a polymer but a fibre/polymer couple. The drawn conclusions are of great interest as it may have numerous consequences in applications such as adhesion.  相似文献   

5.
The most challenging objective in the electronic industries is to develop materials that demonstrate a tunable thermal property with today's microelectronic devices. The development of composite material with balanced thermal properties is highly appreciated and currently competing the traditional monolithic conductive material. However, the tailored thermal properties of the composite are significantly influenced by the composites constituents and their fabrication routes. This article presents a review of thermal properties of particulate as well as fiber-reinforced composite proportional to matrix microstructure, reinforcement architecture. The processing techniques used to fabricate composites have been addressed with an objective to achieve suitable thermal properties. The developments in the analytical and numerical simulation approach to predict the thermal conductivity and CTE of the developed composites have been critically reviewed. Lastly, future work needs attention is summarized.  相似文献   

6.
Multiwalled carbon nanotubes (MWCNTs) are considered to be the ideal reinforcing agent for high-strength polymer composites, because of their fantastic mechanical strength, high electrical and thermal conductivity and high aspect ratio. Polymer/MWCNTs composites are easily molded, and the resulting shaped plastic articles have a perfect surface appearance compared with polymer composites made using usual carbon or glass fibers. Good interfacial adhesion between the MWCNTs and the polymer matrix is essential for efficient load transfer in the composite. The ultrahigh strength polymer composites demand the uniform dispersion of the MWCNTs in the polymer matrix without their aggregation and the good miscibility between MWCNT and polymer matrix. This approach can also be applied to biodegradable synthetic aliphatic polyesters such as poly(l-lactide) (PLLA), which has received a great deal of attention due to environmental concerns. In this study, PLLA was melt-compounded with MWCNTs. A high degree of dispersion of the MWCNTs in the composites was obtained by grafting PLLA onto the MWCNTs (PLLA-g-MWCNTs). After oxidizing the MWCNTs by treating them with strong acids, they were reacted with l-lactide to produce the PLLA-g-MWCNTs. The mechanical properties of the PLLA/PLLA-g-MWCNT composite were higher than those of the PLLA/MWCNT composite. The electrical conductivity of the composites was determined by measuring the volume resistivity, which is a value of the resistance expressed in a unit volume by two-probe method. The thermal diffusivity and heat capacity of composites was measured by laser flash method, and the effects of modification of the MWCNT in PLLA matrix are discussed.  相似文献   

7.
Poly-methylmethacrylate/Mg–Al layered double hydroxide (PMMA/LDH) based nanocomposites have successfully been synthesised with varying LDH content by in situ polymerisation technique and systematically studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), UV-Visible spectroscopy and microscopic (FE SEM and HR TEM) analysis. In particular, thermogravimetric analysis (TGA) and gas barrier properties measurement were carried out to assess the suitable application of these materials. The thermal property of PMMA/LDH composites was compared with neat PMMA and an enhancement in thermal stability was noticed with gradual increase in LDH content in the composite. Gas permeability measurement data showed significant decrease in oxygen permeability value of the PMMA/LDH nanocomposites in comparison to the pristine PMMA. Enhancement in thermal stability along with significant reduction in oxygen permeability of PMMA upon composite formation indicate the possible application of these materials in packaging industries.  相似文献   

8.
《Composite Interfaces》2013,20(2-3):169-191
Natural fiber reinforced renewable resource based laminated composites were prepared from biodegradable poly(lactic acid) (PLA) and untreated or surface-treated pineapple leaf fibers (PALF) by compression molding using the film stacking method. The objective of this study was to determine the effects of surface treatment of PALF on the performance of the fiber-reinforced composites. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to aid in the analysis. The mechanical properties of the PLA laminated composites were improved significantly after chemical treatment. It was found that both silane- and alkali-treated fiber reinforced composites offered superior mechanical properties compared to untreated fiber reinforced composites. The effects of temperature on the viscoelastic properties of composites were studied by dynamic mechanical analysis (DMA). From the DMA results, incorporation of the PALF fibers resulted in a considerable increase of the storage modulus (stiffness) values. The heat defection temperature (HDT) of the PALF fiber reinforced PLA laminated composites was significantly higher than the HDT of the neat PLA resin. The differential scanning calorimeter (DSC) results suggest that surface treatment of PALF affects the crystallization properties of the PLA matrix. Additionally, scanning electron microscopy (SEM) was used to investigate the distribution of PLA within the fiber network. SEM photographs of fiber surface and fracture surfaces of composites clearly indicated the extent of fiber–matrix interface adhesion. It was found that the interfacial properties between the reinforcing PALF fibers and the surrounding matrix of the laminated composite are very important to the performance of the composite materials and PALF fibers are good candidates for the reinforcement fiber of high performance laminated biodegradable biocomposites.  相似文献   

9.
《Composite Interfaces》2013,20(4):335-353
Cellulosic fibers have been used as cost-cutting fillers in plastic industry. Among the various factors, the final performance of the composite materials depends to a large extent on the adhesion between the polymer matrix and the reinforcement and therefore on the quality of the interface. To achieve optimum performance of the end product, sufficient interaction between the matrix resin and the cellulosic material is desired. This is often achieved by surface modification of the resin or the filler. Banana fiber, the cellulosic fibers obtained from the pseudo-stem of banana plant (Musa sepientum) is a bast fiber with relatively good mechanical properties. The fiber surface was modified chemically to bring about improved interfacial interaction between the fiber and the polyester matrix. Various silanes and alkali were used to modify the fiber surface. Modified surfaces were characterized by SEM and FTIR. The polarity parameters of the chemically modified fibers were investigated using the solvatochromic technique. The results were further confirmed by electrokinetic measurements. Chemical modification was found to have a profound effect on the fiber–matrix interactions. The improved fiber–matrix interaction is evident from the enhanced tensile and flexural properties. The lower impact properties of the treated composites compared to the untreated composites further point to the improved fiber–matrix adhesion. In order to know more about the fiber–matrix adhesion, fractured surfaces of the failed composites where further investigated by SEM. Of the various chemical treatments, simple alkali treatment with NaOH of 1% concentration was found to be the most effective. The fiber–matrix interactions were found to be dependent on the polarity of the modified fiber surface.  相似文献   

10.
The properties of polymer matrix composites are related not only to the chemical composition of the materials but also to the processing equipment used for their preparation which has a direct influence on the microstructure of the composites. In this paper polypropylene (PP)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt blending through a self-developed, eccentric rotor extruder (ERE). The structure and elongational deformation mechanism of an ERE were described in detail. The morphological, rheological, thermal and mechanical properties of the resulting PP/MWCNTs nanocomposites were investigated. Scanning electron microscopy (SEM) and rheological analysis showed that the MWCNTs were well dispersed in the PP matrix. The thermal stability was investigated by thermogravimetric analysis (TGA) and indicated that the addition of MWCNTs could effectively improve the thermal stability of pure PP. The percentage of crystallinity and tensile strength of the composites were improved as a result of the heterogeneous nucleation effect of the MWCNTs in the PP matrix. The research results revealed that the enhancement of the properties of PP/MWCNTs composites could be attributed to a better dispersion of the MWCNTs in the matrix as compared to samples prepared by conventional extrusion.  相似文献   

11.
The waste management of glass fiber reinforced polymer (GRP) materials, in particular those made with thermosetting resins, is a critical issue for the composites industry because these materials cannot be reprocessed. Therefore, most thermosetting GRP waste is presently sent to landfill, in spite of the significant environmental impact caused by their disposal in this way. The limited GRP waste recycling worldwide is mostly due to its intrinsic thermosetting properties, lack of characterization data and unavailability of viable recycling and recovery routes. One of the possibility for re-using GRP industrial by-product is in form of powder as a partial aggregate replacement or filler addition in cement based composites for applications in sustainable construction materials and technologies. However, the feasibility of this kind of reutilization strongly depends on the morphology and particle size distribution of a powder made up of polymer granules and glass fibers. In the present study, the use of image analysis method, based on scanning electron microscopy (SEM) and ImageJ processing program, is proposed in order to evaluate the morphology of the particles and measure the particle size and size distribution of fine GRP waste powder. The obtained results show a great potential of such a method in order to be considered as a standardized method of measurement and analysis in order to characterize the grain size and size distribution of GRP particles before exploiting any compatibility issue for its recycling management.  相似文献   

12.
Abstract

It is important to optimize the properties of a material for a particular application, hence, to find the suitable material for tribological applications, the wear and friction behaviour of AA5052 in situ composites with different kind of reinforcements have been investigated. For present study, three in situ formed composites have been produced with different reinforcements namely Al3Zr, ZrB2 and combination of both (Al3Zr + ZrB2) by direct melt reaction (DMR) technique. The as-cast composites and base alloy have been characterized by X-ray diffraction (XRD), optical microscopy, electron microscopy, tensile testing, hardness and dry sliding wear and friction tests. XRD results indicate the successful formation of second phase reinforcement particles in all composites. Wear test results indicate that the cumulative volume loss increases with an increase in sliding distance while coefficient of friction shows a fluctuating tendency, whereas with increasing applied load, wear rate shows an increasing trend while coefficient of friction shows decreasing trend. The variation of wear rate with composites indicates that the composite with multiple reinforcement (Al3Zr + ZrB2) has lowest wear rate among all as-cast composites and base alloy, while coefficient of friction is higher. The responsible mechanisms concerned with wear and friction results have been discussed in detail with the help of the observation on worn surface analysis by scanning electron microscope (SEM) and 3D-profilometer. All tribological results have been correlated with the microstructural properties, strength parameters and bulk hardness of the composites.  相似文献   

13.
There has been a growing interest in the utilization of sisal fibres as reinforcement in the production of polymeric composite materials. Natural fibres have gained recognition as reinforcements in fibre polymer–matrix composites because of their mechanical properties and environmental friendliness. The mechanical properties of sisal fibre-reinforced polymer composites have been studied by many researchers and a few of them are discussed in this article. Various fibre treatments, which are carried out in order to improve adhesion, leading to improved mechanical properties, are also discussed in this review paper. This review also focuses on the influence of fibre content and fabrication methods, which can significantly affect the mechanical properties of sisal fibre-reinforced polymer composites.  相似文献   

14.
The present work focuses on the investigation of the thermal–mechanical properties of the epoxy composites with hybrid boron nitride nanotubes (BNNTs) and boron nitride nanosheets (BNNSs). The stable dispersions of BNNTs–BNNSs were achieved by a noncovalent functionalization with pyrene carboxylic acid. The resulting epoxy/BNNTs–BNNSs composites exhibited homogeneously dispersed BNNTs–BNNSs and a strong filler–matrix interface interaction. The composites showed a 95 % increase in thermal conductivity and a 57 % improvement in Young’s modulus by addition of only 1 vol. % BNNTs–BNNSs. Meanwhile, the composites also retained a high electrical resistance of pure epoxy. Our study thus shows the potential for hybrid BNNTs–BNNSs to be successfully used as the nanofillers of polymer composites for applications in electrically insulating thermal interface materials.  相似文献   

15.
Using a finite element-based multi-scale modeling approach, the bending, buckling and free vibration of hybrid polymer matrix composites reinforced by carbon fibers and carbon nanotubes (CF/CNT-RP) are analyzed herein. Thick composite plates with rectangular, circular, annular and elliptical shapes are considered. First, the equivalent material properties of CF/CNT-RP are calculated for different volume fractions of CF and CNT. To accomplish this aim, a two-step procedure is presented through which the coupled effects of nano- and micro-scale are taken into account. In the first step, modeling of dispersion of CNTs into the polymer matrix is done with considering interphase formed by their chemical interaction with the matrix, and the equivalent properties of resulting composite material are determined accordingly. CFs are then dispersed into CNT-RP which is considered a homogenous material in this step. Both distributions of CNTs and CFs are assumed to be random. After computing the equivalent properties of CF/CNT-RP for different volume fractions of its constituents, the bending, buckling and free vibration analyses of plates with different shapes are performed. It is shown that the reinforcement of the polymer matrix with both CF and CNT significantly affects the bending, buckling and free vibration characteristics of plates.  相似文献   

16.
《Composite Interfaces》2013,20(1-2):25-39
The effects of surface grafting of a polymer onto lignocellulosic fiber surface and processing methods on both the interfacial interactions and the resulting composite properties of the fiber-reinforced thermoplastic composites were investigated. Chemithermomechanical pulp (CTMP) wood fiber was used as a reinforcement, which has been chemically modified by radical polymer grafting of styrene onto the fiber surfaces. The chemically modified CTMP fiber was then compounded with polystyrene (PS). Two different processing methods, both compression and injection moldings, were performed to prepare the wood-fiber-reinforced composites. Experimental results showed that surface modification of wood fiber leads to an obvious increase in mechanical properties of the fiber-reinforced composites as compared to the untreated fiber composites. The enhancement of mechanical properties is much greater through injection molding compared with compression molding owing to occurrence of orientation, and better mixing and interaction between the fiber and the matrix by injection molding. An improvement in fiber wetting properties and adhesion by the matrix was observed through scanning electron microscopy for the surface grafted fiber reinforced composites. Untreated wood fiber exhibited a smooth surface without adhered polymer, indicating poor adhesion, while polymer attached to the surface was seen on treated cellulose fiber due to the higher fiber-matrix interactions.  相似文献   

17.
《Composite Interfaces》2013,20(8-9):659-684
Talc, calcium carbonate (CaCO3), and kaolin hold considerable promise in the development of polymer composites for good mechanical properties and stability. Comparative studies on the usage of these minerals as single fillers in polypropylene (PP) have shown varying degrees of reinforcement due to their differences in terms of particle geometry, surface energy and affinity towards the matrix polymer. In this study, comparisons were made in terms of mechanical, thermal and weatherability properties between hybrid-filler PP composites (i.e. PP filled with either talc–CaCO3 or talc–kaolin hybrid filler combinations), with particular attention directed towards the effect of surface modification of the fillers. The talc/CaCO3 hybrid composites have shown exceptional performance in terms of flexural and impact properties. The contribution of talc in the talc–kaolin hybrid composite system has been significant in terms of enhancing the overall tensile and flexural properties. The ability of silane and titanate coupling agents in boosting the resistance of the composites to severe damage and degradation due to natural weathering has been shown.  相似文献   

18.
Thermomechanical ceramics have interesting properties: mainly high hardness, high wear resistance, good chemical resistance, good mechanical strength at high temperatures and generally low thermal conductivity. But, the engineering use of ceramics as structural parts is at the moment limited by their inherent brittleness. The toughness values of ceramics are between about to 5 MPa √m whereas the toughness values of metals are much higher (from 20 to 200 MPa √m). To avoid this brittleness, composite ceramics have to be used. Two types of composite materials can be developed: particle-reinforced composites and fiber-reinforced composites. In this paper, some examples of reinforcement of ceramics are presented. Two cases will be developed: second-phase reinforcement with zirconia particles or other particles, and the composites reinforced by fibers or whiskers.  相似文献   

19.
A composite of polythiophene (PT) and nano-titanium dioxide (TiO2), possessing core–shell structure, was synthesized via oxidative polymerization of thiophene using FeCl3 in the presence of three different surfactants: anionic, cationic, and nonionic. The morphology of the obtained composite materials was investigated by SEM, proving the core–shell structure of the prepared nanocomposite. The formation and thermal stability of the PT onto TiO2 nanoparticles were confirmed by FTIR and TGA analyses, respectively. XRD data show all of composite materials were amorphous structures. The electrical properties of the nanocomposites were investigated in the presence of surfactant materials, and the best semiconductor property was observed for PT/TiO2-anionic system. This difference in the conductivity has been attributed to differences in the stability of the composites.  相似文献   

20.
The composite of silver-modified lithium manganese oxide were prepared using thermal decomposition method of different mole ratio. Structural characterization was carried out by X-ray diffraction (XRD). XRD analysis revealed different patterns as the content of the dopant in the spinel increases. Phase analysis shows that Ag particles were dispersed on the LiMn2O4 surface instead of entering the spinel structure. On the other hand, the electrochemical behavior of cathode powder was examined by using two-electrode test cells consisting of a cathode, metallic lithium as anode, and a solid polymer electrolyte of 0.87PEO-0.13LiCF3SO3-0.10DBP. According to the electrochemical tests results, the influence of the Ag additive content on the electrochemical properties of Ag/LiMn2O4 composites is clearly shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号